MATHEMATICAL TRIPOS Part III

Friday, 30 May, 2014 1:30 pm to 4:30 pm

PAPER 12

ALGEBRAIC TOPOLOGY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

 $\mathbf{1}$

Compute the cohomology groups of the infinite-dimensional real projective space \mathbb{RP}^{∞} . [The ring structure in cohomology is not required.]

For any topological space X, construct a homomorphism

$$\beta: H^n(X; \mathbb{Z}_m) \to H^{n+1}(X; \mathbb{Z}_m)$$

which fits into a long exact sequence

$$\cdots \to H^n(X; \mathbb{Z}_m) \to H^n(X; \mathbb{Z}_{m^2}) \to H^n(X; \mathbb{Z}_m) \xrightarrow{\rho} H^{n+1}(X; \mathbb{Z}_m) \to \cdots$$

Show that $\beta : H^n(\mathbb{RP}^\infty; \mathbb{Z}_2) \to H^{n+1}(\mathbb{RP}^\infty; \mathbb{Z}_2)$ is an isomorphism for n odd and is zero for n even.

$\mathbf{2}$

Let X be a topological space. Define the cohomology with compact supports $H^*_{ct}(X)$. Compute $H^*_{ct}(\mathbb{R})$, where \mathbb{R} has the Euclidean topology.

The one-point compactification of X is the set $X^+ = X \cup \{\infty\}$ comprising X and a disjoint point $\{\infty\}$, with a basis of open sets given by (i) the open sets in X and (ii) the unions $(X \setminus K) \cup \{\infty\}$, with $K \subset X$ compact. Prove that if X^+ is Hausdorff and locally contractible at ∞ , i.e. admits a basis of contractible open neighbourhoods of ∞ , then

$$H^*_{ct}(X) \cong H^*(X^+) \tag{1}$$

0

Now let $X = \mathbb{Z} \times \mathbb{R} \subset \mathbb{R}^2$ with the Euclidean topology. Does (1) hold for X? Justify your answer.

3

Define the tautological complex line bundle over \mathbb{CP}^n , and prove that it is locally trivial. Hence, compute $H^*(\mathbb{CP}^n;\mathbb{Z})$ as a ring.

Let n > 1. Show that there is no continuous function $f: (S^2)^n \to S^2$ satisfying

- 1. f is invariant under permutations of the factors;
- 2. $f(x, \ldots, x) = x$ for every $x \in S^2$.

2

 $\mathbf{4}$

State the Poincaré duality theorem.

Let X be a closed connected orientable six-dimensional manifold. Prove that the Euler characteristic $\chi(X)$ is even. For each $k \in 2\mathbb{Z}$, construct a closed orientable six-manifold X_k with $\chi(X_k) = k$.

If X is a closed six-manifold which is not orientable, need $\chi(X)$ be even? Justify your answer.

$\mathbf{5}$

Let $E \to X$ be a complex vector bundle of (complex) rank k over a compact space X. Let $\pi : \mathbb{P}(E) \to X$ denote the associated projective bundle, with fibre \mathbb{CP}^{k-1} . Show that the map

$$H^*(X) \oplus \cdots \oplus H^*(X) \longrightarrow H^*(\mathbb{P}(E)), \ (u_0, \dots, u_{k-1}) \mapsto \sum \pi^*(u_i) t^i$$

is an isomorphism, so $H^*(\mathbb{P}(E))$ is the free $H^*(X)$ -module with basis $\{1, t, t^2, \ldots, t^{k-1}\}$, where t is the Euler class of a line bundle \mathcal{L} on $\mathbb{P}(E)$ which you should define. [Hint: Imitate the proof of the Thom isomorphism theorem.]

Deduce that $H^*(\mathbb{P}(E)) \cong H^*(X)[t]/I$, where I = (f(t)) is the ideal generated by a monic polynomial

$$f(t) = t^{k} - c_{1}(E)t^{k-1} + c_{2}(E)t^{k-2} + \dots + (-1)^{k}c_{k}(E)$$

for uniquely defined classes $c_i(E) \in H^{2i}(X)$.

Finally, suppose $E \cong \bigoplus_{i=1}^{k} L_i$ is a direct sum of complex line bundles. By considering suitable sections $s_i : X \to \mathbb{P}(E)$, for $1 \leq i \leq k$, prove that

$$f(t) = \prod_{i=1}^{k} (t - e_i) \in H^*(X)[t]$$

where e_i is the Euler class of L_i .

END OF PAPER

Part III, Paper 12