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Write be(A) for the cardinality of the edge-boundary of a subset A of the vertex set of the
cube Qn = {0, 1}n (with 2n vertices and n2n−1 edges), and let 1 6 k 6 n− 1.

(i) What is
f(2k) = min{be(A) : A ⊂ Qn, |A| = 2k}?

(ii) What is

g(2k) = min{be(D) : D is a down-set in Qn and |D| = 2k}?

(iii) Determine

h(m) = max{be(D) : D is a down-set in Qn with |D| = m}.
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(i) State and prove the Erdős–Ko–Rado theorem.

(ii) Let c1, . . . , cn > 0 be such that
∑

n

i=1
ci = 1 and

∑

i∈A
ci 6= 1/2 for every A ⊂ [n].

Let Z1, . . . , Zn be i.i.d. Bernoulli random variables with P(Zi = 1) = p > 1/2 and
P(Zi = 0) = 1− p, and set Z =

∑

n

i=1
ciZi. Prove that

P(Z > 1/2) > p.
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(i) State and prove the Four Functions theorem.

(ii) Show that if A,B ⊂ P(n) then

|A ∨ B| |A ∧ B| > |A| |B|.

(iii) For A,B ⊂ P(n), write

A− B =
{

A \B : A ∈ A, B ∈ B
}

.

Show that
|A − B||B − A| > |A||B|.
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(i) Define an independence graph of a family of events, and state the Lovász Local Lemma.

(ii) Let k > 20 and s > 6k log k. Show that if S ⊂ Z with |S| = s then Z has a k-colouring
(depending on S) in which each colour class meets every translated copy of S.
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