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1

Define what it means for a ring R to be (i) Artinian and (ii) Noetherian.

Show that an Artinian ring is necessarily Noetherian.

Show that if R if a Noetherian ring then the power series ring R[[X]] is Noetherian.

Is it true that if R is Artinian then R[[X]] is Artinian?

2

Let I be a proper ideal of a Noetherian ring R.

What does it mean for a prime ideal P to be minimal over I?

What are the associated primes of the R-module R/I?

Show that the set of minimal primes over I is a non-empty subset of the set of

associated primes of R/I.

Give an example where there is an associated prime of R/I which is not minimal

over I.

3

Let R be a subring of a ring T .

What does it mean for T to be integral over R.

Define the dimension dimR of R and show that dimR = dimT when T is integral

over R.

Let k be a field. What is the dimension of k[X,Y ]/(XY +X2 + Y 3)? Justify your

answer.

4

State and prove the Hilbert-Serre theorem on the rationality of Poincaré series of

graded modules.

Let R be a local ring with unique maximal ideal P .

Explain how to define d(R).

Give an example of a local ring R with d(R) = 2.
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5

Define the integral closure of a subring R in a ring T .

What does it mean for an integral domain to be a valuation ring?

Let R be an integral domain with fraction field K. Show that the integral closure

of R in K is the intersection of all the valuation subrings of K containing R.

6

Let P be a prime ideal of a Noetherian ring R and M be a finitely generated R-

module.

Define the localisations RP and MP and explain how MP is an RP -module.

Show that M is zero if and only if MP is zero for all prime ideals P of R.

What does it mean for M to be (i) injective and (ii) projective.

Show that M is injective if and only if MP is injective for all prime ideals P of R.

Define the global dimension of R.

Show that if the global dimension of R is zero then all R-modules are both injective

and projective.
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