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(i) Using the result that the trigonometric polynomials are uniformly dense in the
continuous functions, show that if f ∈ C(T) then
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2π

∫

T

∣

∣

∣

∣

∣

f(t)−
N
∑

n=−N

f̂(n) exp(int)

∣

∣

∣

∣

∣

2

dt → 0

as N → ∞.

(ii) Use (i) to establish that, if f, g ∈ C(T) and f̂(n) = ĝ(n) for all n, then f = g.

(iii) Show that, if f ∈ C(T) and
∑

∞

n=−∞
|f̂(n)| converges then

N
∑

n=−N

f̂(n) exp(int) → f(t)

uniformly.

(iv) Show that, if f is once continuously differentiable, then f satisfies the conditions
of (iii).

(v) If f, g ∈ C(T), show that

1

2π

∫

T

f(t)g(t)∗ dt =

∞
∑

n=−∞

f̂(n)ĝ(n)∗.

(vi) Give Hurewitz’s proof of the classical isoperimetry inequality concerning the
length and area enclosed by a curve.

(vii) In this part of the question you may assume the Fourier transform inversion
theorem. Suppose that f : R → R is a continuous function with

∫

∞

−∞
|f(t)| dt convergent

and
∫

∞

−∞

f(t) exp(−iλt) dt = 0

for |λ| > π. Show that

f(t) =

∞
∑

n=−∞

f(n)D(t− n)

where D is the function given by

D(t) =
sinπt

πt

for t 6= 0 and D(0) = 1.
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(i) Establish the theorem of Kahane and Katznelson which states that, given any set
E of zero Lebesgue measure, there exists a continuous function f : T → C whose partial
Fourier sums Sn(f, t) diverge when t ∈ E.

(ii) Show that there exists a continuous function g : T → C such that

|Sn(g, t)| 6 1

for all t ∈ T and all n > 0, but Sn(g, 0) fails to converge.

3

(a) Develop the theory of infinite products and use it to show that, given any
sequence of complex numbers zj → ∞, and any sequence of strictly positive integers
nj > 1 there exists an analytic function with zeros of order nj at zj for each j and no
other zeros.

Is the result true if we omit the condition zj → ∞? Give reasons.

Suppose the conditions of the first paragraph apply and f and g are analytic
functions with zeros of order nj at zj for each j and no other zeros. Show that there
exists an analytic function h with f(z) = eh(z)g(z). If k is an analytic function with
f(z) = ek(z)g(z), what is the relation between h and k? Give reasons.

(b) Starting from first principles, establish the Fourier inversion formula

f(x) = A
∑

χ∈Ĝ

f̂(χ)χ(x)

for finite Abelian groups. (You are not asked to find the constant A.)

[Part (b) carries roughly half the weight of part (a).]
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(a) Show that there exist strictly positive numbers A and B such that (if n is large)
the number N(n) of primes between 1 and n satisfies the condition

A
n

log n
6 N(n) 6 B

n

log n
.

(b) Let Ω is an open set in C with Ω ⊇ {z : ℜz > 0}. Suppose that F : Ω → C is
an analytic function and f : [0,∞) → R a bounded locally integrable function such that

F (z) =

∫

∞

0
f(t)e−tz dz

for ℜz > 0. Show that

∫

∞

0
f(t) dt converges.

Give an example to show that the result may fail if we only demand

Ω ⊇ {z : ℜz > 0}.

[The two parts of this question are of roughly equal weight.]
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