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The transverse field quantum Ising model is defined by the Hamiltonian

Ĥ = −4J

N
∑

n=1

[

ŜxnŜ
x
n+1 +

g

2
Ŝzn

]

,

where Ŝn denotes the quantum spin 1/2 operator at lattice site n, and the boundary
conditions are periodic such that Ŝn+N ≡ Ŝn.

(a) Taking the spin exchange constant J > 0, construct the ground state wavefunctions
and energies of the Hamiltonian for transverse field strength g = 0 and g → ∞, and
comment on their degeneracy.

(b) In one dimension, the operator algebra of spin 1/2 can be generated by spinless
fermion operators through the Jordan-Wigner representation,

Ŝ+
n = exp

[

iπ

n−1
∑

m=1

c†mcm

]

cn, Ŝ−
n = (Ŝ+

n )
†, Ŝzn =

1

2
− c†ncn ,

where the Fermion operators, cm obey anticommutation relations, [cm, c
†
n]+ = δmn.

Neglecting boundary-like terms (which are small in the limit N → ∞), show that
the Hamiltonian can be brought to the form

Ĥ = J
∑

k

(

c†k ic−k

)

(

(g − cos k) − sin k
− sin k −(g − cos k)

)(

ck
−ic†−k

)

,

where the sum runs over discrete Fourier modes, k.

(c) Obtain an expression for the ground state energy of the Hamiltonian, and show that
the spectrum of quasi-particle excitations is given by ǫk = 2J(1 + g2 − 2g cos k)1/2.
Sketch and comment on the form of ǫk for (i) g = 0, (ii) g → ∞, and (iii) g = 1.

(d) Show that the ground-state expectation value of Ŝzn is given by the sum,

N
∑

n=1

〈g.s.|Ŝzn|g.s.〉 =
∑

k

J(g − cos k)

ǫk
.
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The quantum spin S Heisenberg antiferromagnet is described by the Hamiltonian,

Ĥ = J
∑

〈ij〉

Ŝi · Ŝj ,

where Ŝi denotes the spin S operator at lattice site i, the exchange constant J > 0, and
the sum runs over nearest neighbour sites i and j of a regular d-dimensional lattice.

(a) Define the nature of the classical ground states for a general bipartite lattice and
comment on their form for one example of a non-bipartite lattice.

(b) Setting ~ = 1, show that the transformation,

Ŝz = S − a†a, Ŝ− = (Ŝ+)† = (2S)1/2a†
(

1− a†a

2S

)1/2

,

where operators a and a† obey Bose commutation relations, [a, a†]− = 1, is
consistent with quantum spin algebra.

(c) Focusing on the one-dimensional quantum Heisenberg antiferromagnetic spin chain,
with periodic boundary conditions, Ŝm+N = Ŝm, use this transformation to show
that

Ĥ = −NJS(S + 1) + JS
∑

k

(

a†k a−k

)

(

1 γk
γk 1

)

(

ak
a†−k

)

+O(S0),

where γk = cos k.

(d) By implementing an appropriate transformation, show the Hamiltonian can be
brought to the diagonal form

Ĥ = −NJS(S + 1) +
∑

k

ωk

[

α†
kαk +

1

2

]

+O(S0),

where the operators α†
k also obey Bose commutation relations. Comment on the

form of the dispersion, ωk. Explain how this result generalizes to the d-dimensional
hypercubic lattice.

(e) By considering the sublattice magnetization of the ground state in the one-dimensional
system,

〈g.s.| 1
N

∑

m

(−1)mŜzm|g.s.〉,

comment on the nature of the spin order. Generalizing this result, comment on
what happens in higher dimension.
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A quantum particle moves in a one-dimensional double well potential V (q) =
1

(8a2)mω
2(q2 − a2)2.

(a) In the Euclidean time formulation, obtain an expression for the quantum transition

amplitudes 〈a|e−Ĥτ/~| ± a〉 in the form a Feynman path integral.

(b) Taking ωτ ≫ 1, show that the transition amplitudes can be written in the form,

〈a|e−Ĥτ/~| ± a〉 ≈
∑

n even / odd

e−ωτ/2

n!

(

τKe−S0/~
)n

.

Obtain an expression for S0 and comment on the meaning of K. Comment on
the validity of the approximation. Performing the sum on n, discuss the physical
interpretation of the result.

For the quantum haromic oscillator potential V (q) = 1
2mω

2q2, you may note that

the following identity for the transition amplitude,

〈0|e−Ĥτ/~|0〉 =
(

mω

2π~ sinh(ωτ)

)1/2

.

(c) Suppose now that the quantum particle moves in a periodic lattice potential V with
periodicity a and minima at na, with n integer. Making use of the result above,

obtain an expression for the Feynman amplitude 〈na|e−Ĥτ/~|ma〉, with m and n
both integer. Then, making use of the identity δqq′ =

∫ 2π
0

dθ
2π e

i(q−q′)θ, show that

〈na|e−Ĥτ/~|ma〉 ∼ eωτ/2
∫ 2π

0

dθ

2π
e−i(n−m)θ exp

[

2∆ǫ τ

~
cos θ

]

.

Explain the physical meaning of ∆ǫ.

(d) Show that this expression is consistent with the low energy particle spectrum
ǫp = ~ω/2− 2∆ǫ cos(pa). Explain why.
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A gas of bosonic particles of mass m, confined to a volume Ld, and subject to a
local repulsive contact interaction of strength g, is described by the d-dimensional quantum
Hamiltonian,

Ĥ =

∫ L

0
ddr

[

a†(r)
p̂2

2m
a(r) +

g

2
a†(r) a†(r) a(r) a(r)

]

,

where the boson operators a†(r) and a(r), respectively, create and annihilate particles at
position r.

(a) Without detailed derivation, show that the partition function, Z = tr e−β(Ĥ−µN̂), can
be cast as a function field integral,

Z =

∫

D(ψ̄, ψ) e−S[ψ̄,ψ] ,

where ψ̄ and ψ denote complex fields. Specify both the action, S[ψ̄, ψ], and state
the boundary conditions on the fields ψ̄ and ψ.

(b) Focussing on the low-temperature system, show that, in the mean-field (saddle-point)
approximation, the ground state forms a Bose-Einstein condensate. Identify the
continuous symmetry that is broken in the ground state, describe the corresponding
manifold of degeneracy associated with possible ground states. What are the
physical consequences of symmetry breaking?

(c) Parameterising the complex fields as ψ =
√
ρ eiφ, where

√
ρ and φ are real, show that

the action involves a set of massive and massless fluctuations.

(d) Expanding the action to leading order in fluctuations of ρ and φ around the saddle-
point, and discarding gradient terms associated with ρ, show that the integral over
the massive fluctuations leads to a field integral of the form, Z = e−S0

∫

Dφ e−Seff [φ],
where S0 is constant, and

Seff [φ] =
1

2

∫ β

0
dτ

∫ L

0
ddr

[

1

g
(∂τφ)

2 +
ρ0
m

(∂φ)2
]

.

Without detailed derivation, by identifying the relation of the effective action, Seff ,
to that of the quantum harmonic chain, or otherwise, obtain the spectrum of low-
energy excitations of the weakly interacting Bose gas.
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