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SECTION A

1

Starting from the definition of a topos, show that if E is a topos then the power-
object functor P : Eop → E is monadic. Deduce that a logical functor which has a left
adjoint also has a right adjoint. Give examples (with brief justification) of functors F
and G between toposes such that both have left adjoints, F preserves exponentials and G
preserves the subobject classifier, but neither has a right adjoint.

[Standard theorems on monadicity, and on the lifting of adjoints, may be assumed.]

2

Show that if G is a cartesian comonad on a topos, then the category of
G-coalgebras is a topos. Hence show that any geometric morphism between toposes can
be factored as one whose inverse image is faithful, followed by one whose direct image is
full and faithful.

3

Explain carefully what is meant by a cartesian (first-order) theory. Sketch the
construction of the syntactic category CT associated with a cartesian theory T, and show
that cartesian functors CT → E correspond to T-models in E . By considering representable
functors, or otherwise, deduce the classical completeness theorem for cartesian theories: if
σ is a cartesian sequent relative to T, which is satisfied in all T-models in Set, then σ is
derivable in T.
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SECTION B

4

Recall that an object A of a coherent category is said to be decidable if the diagonal
A ֌ A × A is a complemented subobject. Show that an object F of a functor category
[C,Set] is decidable iff F (f) is injective for every morphism f of C.

If M is a monoid and A and B are (left) M -sets, show that the exponential BA

in [M,Set] may be identified with the set of M -equivariant maps f : M × A → B, with
M -action given by

(m.f)(m′, a) = f(m′m,a) .

Hence show that

(a) if M satisfies the condition

(∀m ∈M)(∃p, q ∈M)(pmq = p)

then BA is decidable whenever B is. [Hint: First show that if f, g ∈ BA satisfy f 6= g,
then f(1, a) 6= g(1, a) for some a ∈ A.]

(b) ifM is the free monoid on two generators x and y, A is the set of natural numbers
with M -action given by x.n = y.n = n+1 for all n, and B = {0, 1} with trivial M -action,
then BA is not decidable. [Hint: Consider the function f defined by f(w,n) = 1 if w is a

word of length > n ending with x, f(w,n) = 0 otherwise.]

5

Explain how the subobject classifier in a topos E is given the structure of a Heyting
algebra. Define the quasi-closed local operator q(U) associated with a subterminal object
U of E , and show that a subtopos shj(E) of E is Boolean if j is quasi-closed.

Show that the composite geometric morphism

shq(⊤)(E/Ω) −→ E/Ω −→ E ,

where⊤ is the generic subobject in E regarded as a subterminal object of E/Ω, is surjective.
Explain how this result may be used to derive a ‘classical completeness theorem’ for
coherent theories.
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6

Explain what is meant by the regular coverage R on a small regular category C, and
explain briefly why it is subcanonical (that is, the representable functors Cop → Set are
sheaves).

If F ′ is a subfunctor of an R-sheaf F : Cop → Set, show that the closure of F ′ ֌ F
(for the local operator on [Cop,Set] corresponding to R) is the functor F ′′, where

F ′′(A) = {x ∈ F (A) | F (α)(x) ∈ F ′(B) for some cover α : B −⊲A} .

[Hint: First show that F ′′ is a sheaf.]

Deduce that the representable functors are irreducible as objects of Sh(C, R), in the
sense that if C (−, A) is the union of a family of subsheaves (Fi | i ∈ I), then some Fi must
be the whole of C (−, A).

By applying this result to the classifying topos of a regular theory T, deduce that if
~x.φ and ~x.ψi (1 6 i 6 n) are regular formulae-in-context over the signature of T, and the
coherent sequent (φ ⊢~x

∨n
i=1 ψi) is derivable in T, then (φ ⊢~x ψi) is derivable for some i.

[You may assume that the classifying topos of T has the form Sh(CT, R) where CT
is (the regular version of) the syntactic category of T.]

END OF PAPER
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