

MATHEMATICAL TRIPOS Part III

Tuesday, 11 June, 2013 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 74

TOPOS THEORY

Attempt no more than **THREE** questions, of which at most **TWO** should be from Section A. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

SECTION A

1

Starting from the definition of a topos, show that if \mathcal{E} is a topos then the powerobject functor $P: \mathcal{E}^{\mathrm{op}} \to \mathcal{E}$ is monadic. Deduce that a logical functor which has a left adjoint also has a right adjoint. Give examples (with brief justification) of functors Fand G between toposes such that both have left adjoints, F preserves exponentials and Gpreserves the subobject classifier, but neither has a right adjoint.

[Standard theorems on monadicity, and on the lifting of adjoints, may be assumed.]

$\mathbf{2}$

Show that if \mathbb{G} is a cartesian comonad on a topos, then the category of \mathbb{G} -coalgebras is a topos. Hence show that any geometric morphism between toposes can be factored as one whose inverse image is faithful, followed by one whose direct image is full and faithful.

3

Explain carefully what is meant by a cartesian (first-order) theory. Sketch the construction of the syntactic category $C_{\mathbb{T}}$ associated with a cartesian theory \mathbb{T} , and show that cartesian functors $C_{\mathbb{T}} \to \mathcal{E}$ correspond to \mathbb{T} -models in \mathcal{E} . By considering representable functors, or otherwise, deduce the classical completeness theorem for cartesian theories: if σ is a cartesian sequent relative to \mathbb{T} , which is satisfied in all \mathbb{T} -models in **Set**, then σ is derivable in \mathbb{T} .

SECTION B

 $\mathbf{4}$

Recall that an object A of a coherent category is said to be *decidable* if the diagonal $A \rightarrow A \times A$ is a complemented subobject. Show that an object F of a functor category $[\mathcal{C}, \mathbf{Set}]$ is decidable iff F(f) is injective for every morphism f of \mathcal{C} .

3

If M is a monoid and A and B are (left) M-sets, show that the exponential B^A in $[M, \mathbf{Set}]$ may be identified with the set of M-equivariant maps $f: M \times A \to B$, with M-action given by

$$(m.f)(m',a) = f(m'm,a) .$$

Hence show that

(a) if M satisfies the condition

$$(\forall m \in M)(\exists p, q \in M)(pmq = p)$$

then B^A is decidable whenever B is. [Hint: First show that if $f, g \in B^A$ satisfy $f \neq g$, then $f(1, a) \neq g(1, a)$ for some $a \in A$.]

(b) if M is the free monoid on two generators x and y, A is the set of natural numbers with M-action given by x.n = y.n = n + 1 for all n, and $B = \{0, 1\}$ with trivial M-action, then B^A is not decidable. [Hint: Consider the function f defined by f(w, n) = 1 if w is a word of length > n ending with x, f(w, n) = 0 otherwise.]

5

Explain how the subobject classifier in a topos \mathcal{E} is given the structure of a Heyting algebra. Define the quasi-closed local operator q(U) associated with a subterminal object U of \mathcal{E} , and show that a subtopos $\mathbf{sh}_i(\mathcal{E})$ of \mathcal{E} is Boolean if j is quasi-closed.

Show that the composite geometric morphism

$$\mathbf{sh}_{q(\top)}(\mathcal{E}/\Omega) \longrightarrow \mathcal{E}/\Omega \longrightarrow \mathcal{E}$$
,

where \top is the generic subobject in \mathcal{E} regarded as a subterminal object of \mathcal{E}/Ω , is surjective. Explain how this result may be used to derive a 'classical completeness theorem' for coherent theories.

UNIVERSITY OF

6

Explain what is meant by the *regular coverage* R on a small regular category C, and explain briefly why it is subcanonical (that is, the representable functors $C^{\text{op}} \to \mathbf{Set}$ are sheaves).

If F' is a subfunctor of an R-sheaf $F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$, show that the closure of $F' \to F$ (for the local operator on $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ corresponding to R) is the functor F'', where

$$F''(A) = \{ x \in F(A) \mid F(\alpha)(x) \in F'(B) \text{ for some cover } \alpha \colon B \to A \} .$$

[Hint: First show that F'' is a sheaf.]

Deduce that the representable functors are irreducible as objects of $\mathbf{Sh}(\mathcal{C}, R)$, in the sense that if $\mathcal{C}(-, A)$ is the union of a family of subsheaves $(F_i \mid i \in I)$, then some F_i must be the whole of $\mathcal{C}(-, A)$.

By applying this result to the classifying topos of a regular theory \mathbb{T} , deduce that if $\vec{x}.\phi$ and $\vec{x}.\psi_i$ $(1 \leq i \leq n)$ are regular formulae-in-context over the signature of \mathbb{T} , and the coherent sequent $(\phi \vdash_{\vec{x}} \bigvee_{i=1}^n \psi_i)$ is derivable in \mathbb{T} , then $(\phi \vdash_{\vec{x}} \psi_i)$ is derivable for some *i*.

[You may assume that the classifying topos of \mathbb{T} has the form $\mathbf{Sh}(\mathcal{C}_{\mathbb{T}}, R)$ where $\mathcal{C}_{\mathbb{T}}$ is (the regular version of) the syntactic category of \mathbb{T} .]

END OF PAPER