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Consider the motion of an incompressible Boussinesq fluid rotating about a vertical
axis with angular velocity 1

2
f and with constant buoyancy frequency N . Show that for

small amplitude motions the pressure satisfies the equation

∇2ptt + f2pzz +N2∇H
2p = Q(x),

for arbitrary Q. Show further that the potential vorticity of the motion

q ≡ ζ − f(b/N2)z ,

is related to Q by

Q = ρ0fN
2q.

Consider plane-waves independent of the y-direction. Then

(i) Show by direct calculation using the dispersion relation that the waves have zero
PV.

(ii) Calculate the phase and group velocities and show that they are perpendicular,
and that their vertical components are in opposite directions.

(iii) Calculate the kinetic and potential energy of the waves and show that equipar-
tition holds in the rotating case.
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A homogeneous, incompressible fluid of uniform depth H is at rest on an f -plane.
State the assumptions behind the ‘shallow water approximation’ and show that this implies
that the pressure is hydrostatic.

Write down the shallow water equations for small amplitude motions with free
surface elevation η. Show that these equations imply that the shallow water perturbation
potential vorticity

ζ

f
− η

H
,

where η is the relative vorticity, is conserved.

Consider a coastal current formed by an elevation of the free surface in x < 0 and
bounded by a vertical ‘coast’ at x = 0. The initial free surface elevation is

η =

{
η0 −L < x < 0
0 x < −L.

Using conservation of perturbation potential vorticity, conservation of mass and
continuity of η and v, show that the final state is

η(x) = η0e
x

a sinh
L

a
+

{
η0

(
1− cosh L+x

a

)
−L < x < 0

0 x < −L,

where a =
√
gH/f . Find the flow in the adjusted state and show that the velocity satisfies

the no-slip condition at the coast. Discuss the final shape of the free surface in the limits
L >> a and L << a.
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Consider the following steady, linearised momentum equation describing the large-
scale circulation of the ocean,

f k̂ × uh = − 1

ρ0
∇hp+ ν∇2uh, (1)

where ρ0 is a constant density under the Boussinesq approximation, uh = (u, v, 0) is the
horizontal velocity, ∇h ≡ (∂x, ∂y, 0), f is the vertical component of the Coriolis parameter,
and ν is the kinematic viscosity. In this coordinate frame, the unit vector in the x-direction
points to the east, the unit vector in the y-direction points to the north, and z = 0 and
z = −H correspond to the surface and bottom of the ocean respectively. Assume that H
is constant.

(i) Assuming that the horizontal scales of motion are much larger than the ocean
depth, and neglecting bottom stress, derive the equation for the depth-integrated Sverdrup

flow, in terms of the surface wind stress

τw ≡ ρ0ν
∂uh

∂z

∣∣∣∣
z=0

. (2)

(ii) Frictional effects at the seafloor are often modeled using a linear bottom stress
of the form

τ b ≡ ρ0ν
∂uh

∂z

∣∣∣∣
z=−H

= γuh. (3)

Using this model for the bottom stress, derive an equation for the streamfunction
associated with the depth-integrated flow, ψ. Consider a rectangular basin with 0 < x < 1
and 0 < y < 1, with no-slip boundary conditions. LetW ≡ ∇h×τ

w be the wind stress curl,
and assume that W (y) and its derivatives vanish at the north/south boundaries, y = 0, 1.
Assuming that ν and γ are small parameters and using a boundary layer method, write
down an ordinary differential equation for the streamfunction in the eastern and western
boundary layers.

(iii) Identify two limiting cases based on the sizes of β, ν, and γ, and clearly state
when each limit is valid. In each of these limits, find the form of the general solution valid
throughout the domain. Based on the solution form, what is the expected thickness of the
eastern and western boundary layers in each limit. [Hint: You don’t need to solve for the

constants in the general solution.]
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Start from the two-layer shallow water equations:

D1u1

Dt
+ f k̂× u1 = −g∇(h1 + h2), (1)

D2u2

Dt
+ f k̂× u2 = −g∇(h1 + h2) + g′∇h1, (2)

∂hi

∂t
+∇ · (hiui) = 0, for i = 1, 2, (3)

where Di/Dt = ∂/∂t+ui ·∇ is the material derivative within each layer, hi is the depth of
each layer, f is the vertical component of the Coriolis parameter, and g′ = (ρ2 − ρ1)g/ρ2
is the reduced gravity.

(i) Neglecting the free surface displacement and assuming a flat bottom, derive the
two-layer quasi-geostrophic equations. Clearly state any other approximations needed.

(ii) Derive the QG energy equation by multiplying the QG equation in each layer
by Hiψi with i = 1, 2, where Hi is the constant depth of each layer in a state of rest, and
ψi is the streamfunction.

(iii) Integrating over a horizontal domain where lateral boundary fluxes vanish, show
that the QG energy satisfies a conservation equation of the form

∂

∂t

∫ ∫
QE dxdy = 0, (4)

and give an expression for QE in the integrand. Identify the terms in QE corresponding
to kinetic and potential energy, then show that the ratio of the potential energy to the
baroclinic kinetic energy scales with

l2f20
g′Hi

, (5)

where l is a characteristic horizontal scale associated with the flow, and ψ̃ ≡ (ψ1 − ψ2)/2
is the streamfunction associated with the baroclinic velocity. Comment on the relative
importance of kinetic and potential energy to large and small scale dynamics.
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