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Let u be a Stokes flow (with no body force) in a region V with bounding surface
∂V and outward normal n. Given that the local rate of viscous dissipation is σ : e, where
σ is the stress tensor and e the strain-rate tensor, show that the total dissipation is given
by

D =

∫

∂V

u · σ · n dS.

Let u0, with stress tensor σ0, be the Stokes flow in V0 due to a specified velocity
U0(x) on ∂V0. Now let u0+u′, with stress tensor σ0+σ

′, be the Stokes flow produced by
adding a force-free, couple-free, rigid particle to the flow while maintaining the velocity
equal to U0(x) on ∂V0. Show that the increase D′ in dissipation due to the presence of
the particle is given by

D′ =

∫

∂V0

U0 · σ
′
· n dS .

Use the Reciprocal Theorem to show further that

D′ =

∫

A

(u0 · σ
′ − u′

· σ0) · (−n) dS,

where A is the surface of the particle and −n is its outward normal.

A force-free, couple-free, rigid sphere of radius a is placed at the origin in an
unbounded strain flow with uniform strain rate E. Find the perturbation to the flow
arising from the presence of the sphere. Given that the total stress on the surface of the
sphere is

σ0 + σ
′ = 5µ

{

(n ·E · n)(I− 2nn) + (E · n)n+ n(E · n)
}

,

calculate the increase in dissipation due to the presence of the sphere.

[You may assume that the difference between the unbounded situation and the case

U0 = E · x on r = R, where R ≫ a, is negligible near the sphere.]

A volume fraction φ of such spheres is now distributed throughout the straining
flow, where φ ≪ 1 so that interaction between the spheres can be neglected. Calculate
the number of spheres per unit volume and deduce that the average increase in dissipation
per unit volume is such that the fluid appears to have an effective viscosity

µeff = µ(1 + 5

2
φ).
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State and prove the Reciprocal Theorem for two Stokes flows with viscosity µ and
no body force.

Prove that the resistance matrix, giving the force F and couple G exerted by a rigid
body when moving with velocity U and angular velocity Ω through surrounding viscous
fluid, otherwise at rest, is both symmetric and positive definite.

A rigid body comprises three point masses with weights mg at O = (0, 0, 0), λmg
at A = (2L, 0, 0) and λmg at B = (0, 2L, 0), joined along OA and OB by two thin rods
of negligible weight, length 2L and thickness ǫL. The hydrodynamic resistance to motion
of the point masses is negligible and that of the thin rods is given by the slender-body
formula

f(X) = C(I− 1

2
X′X′) · Ẋ

where C = 4πµ/| ln ǫ| and X(s, t) is the position along the rod. Calculate the 6 × 6
resistance matrix for this body with respect to the axes fixed in the body. Verify that
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 .

The body is allowed to fall under gravity from an initial position in which OA is
horizontal and B is vertically above O. In the subsequent motion OA makes an angle θ(t)
above horizontal. Show that

CL2θ̇ = 1

4
(1− λ)mg(cos θ − sin θ) .

Deduce that if λ < 1 then θ(t) increases monotonically from 0 to π/4 as t → ∞. What
happens if λ > 1?

Show that the horizontal velocity component Uh of the point O satisfies

CLUh = 1

6
(1− λ)mg(cos2 θ − sin2 θ).

Deduce that if λ < 1 then the point O drifts sideways as it falls by a total horizontal
distance 2L/3 in the direction of the initial orientation of OA. Find the corresponding
result for λ > 1.

Sketch the fall of the body for λ < 1 and λ > 1, showing both its trajectory and
orientation.
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A thin layer of viscous fluid of thickness h(x, t) lies between a hot rigid boundary
at z = 0 and a cold inviscid environment. The temperature T (x, z, t) of the fluid satisfies

DT

Dt
= κ

(

∂2T

∂x2
+

∂2T

∂z2

)

in 0 < z < h(x, t) , (1)

T = T0 at z = 0 , −κ
∂T

∂z
= α[T − (T0 −∆T )] at z = h(x, t) ,

corresponding to a fixed boundary temperature T0 and conductive cooling to an environ-
mental temperature T0 −∆T . Here α and κ are constants.

Find the steady temperature distribution T (z) when h is uniform and the fluid
velocity u is zero. Show that if αh/κ ≪ 1 then

T (h) ≈ T0 −∆T
αh

κ
. (2)

Use scaling on the terms in (1) to show that (2) still holds when h varies on a lengthscale
L and the x-component of u has typical magnitude U , provided that ǫ2 ≡ (h/L)2 ≪ 1
and Pe ≡ Uh2/(κL) ≪ 1.

The fluid has a temperature-dependent surface tension γ(T ) = γ0−γ′(T−T0), where
γ′ > 0 is a constant. The other properties of the fluid are independent of temperature,
and gravity is negligible. Assuming that the surface temperature is given by (2), use
lubrication theory to show that

∂h

∂t
+

∂

∂x

(

γ0
3µ

h3
∂3h

∂x3
+

γ′∆Tα

2κµ
h2

∂h

∂x

)

= 0 . (3)

[Justification of the approximations in lubrication theory is not required.] You may assume
that the surface curvature is approximately ∂2h/∂x2, but the use of γ0 in the second term
instead of γ(T ) should be justified by a scaling argument.

Give a brief physical explanation, with diagrams, why the second and third terms
in (3) cause perturbations to a uniform film thickness to decay and to grow.

Equation (3) can be reduced to the dimensionless form

Hτ + (H2HX)X + (H3HXXX)X = 0 (4)

by defining H = h/ĥ, X = ǫx/ĥ and τ = t/t̂. Find the timescale t̂ and aspect ratio
ǫ. Obtain and sketch the dispersion relationship s(k) for small disturbances of the form
H = 1 + δ exp(sτ + ikX) with δ ≪ 1. What is the most unstable wavenumber?

Show that steady solutions of (4) with zero net flux satisfy

1

2
H2

X + V (H) = E,

where V (H) = H(lnH − 1) and E is a constant, provided that ĥ has been chosen so that
H = 1 when HXX = 0. By sketching V (H), or otherwise, describe the form H(X) of the
steady solutions for E = −1, −1 < E < 0 and E = 0. How do these solutions relate to
the dispersion relationship found earlier as E → −1?
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Fluid of viscosity µ and density ρ +∆ρ spreads as a gravity current beneath fluid
of density ρ and over a rigid horizontal surface z = 0. A constant uniform shear stress
τ is exerted on the upper surface of the gravity current by some mechanism (such as an
imposed background flow in the upper fluid). Surface tension is negligible.

Assuming that the gravity current can be described by lubrication theory, show that
its thickness h(x, y, t) obeys

∂h

∂t
+

τ

2µ

∂h2

∂x
=

∆ρ g

3µ
∇ ·

(

h3∇h
)

,

where x and y are the horizontal coordinates parallel and perpendicular to the shear
stress τ . If h has typical magnitude H and varies on a horizontal lengthscale L, what
dimensionless groups, expressed in terms of the given parameters, must be small for the
approximations of lubrication theory to hold?

Consider the case of steady flow from a point source of constant volume flux
Q located at the origin. At large distances x downstream, the thickness h(x, y) and
cross-stream width 2yN (x) of the current satisfy h ≪ yN ≪ x. By making suitable
approximations and scaling estimates, find how yN depends on x and the other parameters.
Hence find a similarity solution for h(x, y) and determine the corresponding yN (x).

Sufficiently close to the source, the similarity solution does not apply since the
lengthscales in the x and y directions are comparable. Use scaling arguments to estimate
the distance xN that the current spreads upstream of the source, explaining the balance
that determines this distance.

Now consider the case of steady flow with no variation in the y-direction from a
line source at x = 0 with constant volume flux Q2d per unit width. Assuming that h is a
constant in x > 0, determine h(x) in x < 0 and deduce the value of xN .
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