MATHEMATICAL TRIPOS Part III

Tuesday, 4 June, 2013 $\,$ 9:00 am to 12:00 pm

PAPER 67

PERTURBATION AND STABILITY METHODS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Find an asymptotic expansion for the roots x_n of the equation

$$\tan x = \mu x$$

 $\mathbf{2}$

with both x and μ real, and $x_n \to \infty$. Your expansion should include the first term that depends on μ .

What restriction, if any, must be placed on μ for validity of the expansion?

(b) Explain briefly the class of (real) integrals appropriate for use of (i) Watson's lemma and (ii) Laplace's method. Use Laplace's method to find **two** terms of an asymptotic expansion for the Gamma Function

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} \mathrm{d}t$$

in the limit $x \to \infty$.

[If

$$I_n = \int_{-\infty}^{\infty} s^{2n} e^{-s^2/2} \mathrm{d}s$$

then $I_0 = \sqrt{2\pi}$ and $I_n = (2n-1)I_{n-1}, n = 1, 2, \dots$]

 $\mathbf{2}$

Explain briefly what is meant by the **method of multiple scales**.

(a) Two oscillators x(t), y(t) are weakly coupled so that for small ϵ ,

$$\begin{aligned} \ddot{x} + x + \epsilon (\alpha x + xy) &= 0, \\ \ddot{y} + n^2 y + \epsilon xy &= 0, \end{aligned}$$

and x(0) = X, $\dot{x}(0) = 0$, y(0) = Y, $\dot{y}(0) = 0$.

Suppose that n = 2. Use the method of multiple scales to find leading order solutions for x(t) and y(t), and specify the range of t for which they are valid. Under what circumstances do oscillations grow?

Suppose instead that n = 1. On what timescale could oscillations of the system grow? [Full solutions for x(t) and y(t) are **not** required in this case.]

(b) Derive the leading order solution of the WKB equation

$$y'' + k^2 y = 0$$

where k depends on ϵx and $\epsilon \to 0$. Specify restrictions on its validity.

UNIVERSITY OF

3

Consider the equation

$$\epsilon \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1+x)^2 \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0 \text{ with } y(0) = y(1) = 1.$$

Find the first two nonzero terms in the inner and outer expansions in the limit $\epsilon \to 0$. Determine a uniformly-valid approximation to y which is correct up to and including $O(\epsilon)$.

Describe **briefly** how you would determine the asymptotic solution of :

(i)

$$\epsilon \frac{d^2 y}{dx^2} - (1+x)^2 \frac{dy}{dx} + y = 0 \quad \text{with} \quad y(0) = y(1) = 1;$$
(ii)

$$\epsilon \frac{d^2 y}{dx^2} + (1+x)^2 \frac{dy}{dx} + y = 0 \quad \text{with} \quad y(-1) = y(1) = 1;$$
(iii)

$$\epsilon \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0 \quad \text{with} \quad y(-1) = y(1) = 1.$$

In each case you should state the location and size of each asymptotic region, but further detailed calculations of the expansions are **not** required.

UNIVERSITY OF

 $\mathbf{4}$

(a) Consider the fourth-order equation

$$\frac{\partial \eta}{\partial t} + \alpha \frac{\partial^2 \eta}{\partial x^2} + \beta \frac{\partial^4 \eta}{\partial x^4} + \gamma \eta = 0 ,$$

where α, β, γ are nonzero real constants. By considering solutions which are proportional to $\exp(-i\omega t + ikx)$, derive a condition on β for the system to possess a finite maximum temporal growth rate over all real k, and explain why this is important for application of the Briggs-Bers technique. Determine necessary conditions for the occurrence of absolute instability. Why are these conditions not sufficient?

(b) In the following, the Fourier transform is defined to be

$$\tilde{f}(k) = \int_{\infty}^{\infty} \exp(-\mathrm{i}kx) f(x) \mathrm{d}x \; ,$$

and you are given that the Fourier transform of $H(x)x^{\alpha}$ is

$$\frac{\exp[-\mathrm{i}\pi(\alpha+1)\mathrm{sgn}(k)/2]\alpha!}{|k|^{\alpha+1}} \quad \text{for} \quad \alpha > -1 \; .$$

Find the first two non-zero terms (if they exist) in the large-k expansion of the Fourier transforms of the following functions:

(i)

$$\frac{1}{1+|x|^3}$$
 ;

(ii)

$$\frac{1}{1+x^3}$$
.

END OF PAPER