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An elastic filament with bending modulus A and length L has small-amplitude
excursions h(x) from the x-axis, and is characterized by the bending energy

E =
1

2

∫ L

0
dxAh2xx .

a) Show that if the boundary conditions on the filament ends are taken to be identical,
then there are four distinct conditions that render the Euler-Lagrange operator self-
adjoint. Explain how the terminology free-free, clamped-clamped, hinged-hinged, and
torqued-torqued applies to these cases.

b) From general principles we know that the set of eigenfunctions of such an operator
define a complete set of basis functions. Show that these can be written as

W (n)(x) = A cos(k(n)x) +B sin(k(n)x) +D cosh(k(n)x) + E sinh(k(n)x) ,

and find the transcendental equation satisfied by k(n) for the case of clamped-clamped

boundary conditions. By a graphical construction or otherwise give approximate values
for the infinite sequence of wave numbers k(n).

c) Use the principle of equipartition to find the variance of h(x), using the expansion
h(x) =

∑

anW
(n)(x).

d) Suppose the filament is now subject to a spatially-varying tension σ(x), with σ(0) =
σ(L) = 0, so that the energy functional is now

E =
1

2

∫ L

0
dx

{

Ah2xx + σ(x)h2x
}

.

Find the Euler-Lagrange equation for this functional, and show how the modal decompo-
sition necessary to apply equipartition can still be carried through formally (i.e. without
solving explicitly for the modes).
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The original Keller–Segel model for pattern formation in the Dictyostelium system
in two spatial dimensions involves the amoebae concentration a and the chemoattractant
concentration ρ in the coupled system

∂a

∂t
= D2∇

2a−∇ · (D1∇ρ) ,

∂ρ

∂t
= Dρ∇

2ρ− k(ρ)ρ+ af(ρ) .

Here, k(ρ) is the degradation rate of the chemoattractant, f(ρ) is its production rate per
amoeba, and Dρ,D1(a, ρ),D2(a, ρ) are all positive. Assume there exists a fixed point of
the homogeneous system with values (a0, ρ0). Perform a linear stability analysis around
this point for two-dimensional perturbations of the form exp(iq · x) and show that the
condition for instability can be expressed as

D1f(ρ0)

D2κ
+

a0f
′(ρ0)

κ
> 1 , (1)

where κ = k(ρ0) + ρ0k
′(ρ0), f ′(ρ) = df(ρ)/dρ and k′(ρ) = dk(ρ)/dρ. What is the

wavelength of the fastest-growing mode?

Explain physically the competing effects embodied in each of the two ratios in the
stability criterion. Which competition leads to aggregation?

3

The radially symmetric spread of an insect population density n(r, t) in the plane
is described by the equation

∂n

∂t
=

D0

r

∂

∂r

[

r

(

n

n0

)2 ∂n

∂r

]

, (∗)

where D0 is a constant diffusivity and n0 is a constant. Suppose Q insects are released at
r = 0 at t = 0. We wish to find a similarity solution to (∗) in the form

n(r, t) =
n0

λ2(t)
F (ξ) ; ξ =

r

r0λ(t)
.

Find the condition on λ(t) that reduces the PDE (*) to an ODE, and then obtain λ(t)
and F such that F (0) = 1 and F (ξ) = 0 for ξ > 1. Determine r0 in terms of Q. Sketch
the function n(r, t) at various times to indicate its qualitative behaviour.
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