MATHEMATICAL TRIPOS Part III

Monday, 10 June, 2013 1:30 pm to 3:30 pm

PAPER 64

IMAGE PROCESSING — VARIATIONAL AND PDE METHODS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let $\Omega = (a, b)^2$ a square image domain and $u \in L^1_{loc}(\Omega)$ an image function. State the definition of the total variation of u and define the space $BV(\Omega)$ with corresponding norm.

Prove that $BV(\Omega)$ is a Banach space. [Hint: You may assume here that $BV(\Omega)$ is a normed space and that the total variation is lower-semicontinuous with respect to the L^1 -norm.]

Now, let $\Omega = \mathbb{R}^2$ and $g(x), x \in \Omega$ be the characteristic function of a ball with centre in the origin and radius $R, 0 < R < \infty$. Derive an explicit formula for the ROF-minimiser u, that is for

$$u = \operatorname{argmin}_{v} \left\{ \alpha |Dv|(\Omega) + \frac{1}{2} \|v - g\|_{2}^{2} \right\}.$$

Carefully justify each step of your derivation and state (without proof) all the theorems you use.

UNIVERSITY OF

 $\mathbf{2}$

Let $\Omega = (0, 1)^2$ a square image domain, 1 > g > 0 be a bounded image function, and T a linear, continuous and positivity preserving operator from $L^1(\Omega)$ to $L^1(\Omega)$. Moreover assume that $T\chi_{\Omega} \neq 0$.

Prove that for $u \in \{v \in L^1(\Omega), \log v \in L^1(\Omega)\}$ the function $\phi(u,g) = Tu - g \log(Tu+1)$ is convex, and that it fulfils the following coercivity condition

$$\int_{\Omega} (Tu - g \log(Tu + 1)) \, dx \ge ||Tu||_1 - ||g||_{\infty} \cdot \log ||Tu + 1||_1.$$

[*Hint:* You may use the fact that for a concave function $f : \mathbb{R} \to \mathbb{R}$ on the real line we have that $f\left(\int_{\Omega} u(x) \, dx\right) \ge \int_{\Omega} f(u(x)) \, dx$.]

Now, consider the following variational problem

$$\min_{u \in L^1(\Omega), \log(u) \in L^1(\Omega)} \left\{ \alpha |Du|(\Omega) + \int_{\Omega} (Tu - g\log(Tu + 1)) \ dx \right\}$$

and prove existence of solutions for the above problem. When is a solution unique? Justify all your steps.

[*Hint:* You may use, without proof, Rellich's compactness theorem and the following form of the Poincaré-Wirtinger inequality: For $u \in BV(\Omega)$, let

$$u_{\emptyset} := rac{1}{|\Omega|} \int_{\Omega} u(x) \ dx$$

Then there exists a constant C > 0 such that

$$||u - u_{\emptyset}||_1 \leq C|Du|(\Omega). \quad]$$

In the finite dimensional setting, that is $\Omega = \{x_1, \ldots, x_M\}^2$, state (without proof) what kind of noise distribution the data fidelity $\sum_{i,j} \phi(u(x_i, x_j), g(x_i, x_j))$ models approximately?

UNIVERSITY OF

3

For $g \in C(\mathbb{R}^2)$, bounded, consider the linear diffusion equation

$$u_t = \Delta u$$
$$u(x, t = 0) = g(x).$$

4

Give an explicit formula for the solution u(x, t) of this equation within the class of functions that satisfy

$$|u(x,t)| \leqslant M \ e^{a|x|^2}, \quad M, a > 0.$$

Relate such a solution at a time T > 0 with linear filtering of g with a Gaussian kernel of standard deviation σ . Investigate the effect of Gaussian filtering in the frequency domain.

Now, consider the Perona-Malik equation

$$\begin{split} u_t &= \operatorname{div}(c(|\nabla u|) \ \nabla u) \\ u(x,t=0) &= g(x), \end{split}$$

where $c(y) = y \cdot e^{-\frac{y^2}{2\lambda^2}}$ for a positive λ . Explain the dynamics of this equation in one space dimension in terms of forward and backward diffusion in dependence of λ .

For $u \in C^{\infty}(\mathbb{R}^2)$ and h > 0 let

$$\operatorname{mean}_{h}(u)(x) := \frac{u(x+(h,0)) + u(x-(h,0)) + u(x+(0,h)) + u(x-(0,h))}{4},$$

be the mean of u in a (vertical-horizontal) h-neighbourhood of x. Prove, that in a point x_0 where $u(x_0) = \text{mean}_h(u)(x_0)$ for all $\infty > h' > h > 0$ (with h' fixed) we have that in the limit as $h \to 0$ the function u fulfils $\Delta u(x_0) = 0$. Assuming that $Du(x_0) \neq 0$, state (without proof) the differential equation for u in x_0 that one receives when replacing the mean by the median, that is

 $\operatorname{median}_{h}(u)(x) = \operatorname{median} \operatorname{value} \operatorname{of} \operatorname{the} \operatorname{set} \{u(y), y \in B_{x}(h)\},\$

where $B_x(h)$ is a disc with radius h and centre x. Based on this differential equation what can you say about the local shape of the level line of u that passes through x_0 ?

$\mathbf{4}$

Write an essay on image segmentation using the Mumford–Shah segmentation model.

END OF PAPER