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1

Let Ω = (a, b)2 a square image domain and u ∈ L1
loc(Ω) an image function. State

the definition of the total variation of u and define the space BV (Ω) with corresponding
norm.

Prove that BV (Ω) is a Banach space. [Hint: You may assume here that BV (Ω) is

a normed space and that the total variation is lower-semicontinuous with respect to the

L1-norm.]

Now, let Ω = R
2 and g(x), x ∈ Ω be the characteristic function of a ball with centre

in the origin and radius R, 0 < R < ∞. Derive an explicit formula for the ROF-minimiser
u, that is for

u = argminv

{

α|Dv|(Ω) +
1

2
‖v − g‖22

}

.

Carefully justify each step of your derivation and state (without proof) all the theorems
you use.
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Let Ω = (0, 1)2 a square image domain, 1 > g > 0 be a bounded image function, and
T a linear, continuous and positivity preserving operator from L1(Ω) to L1(Ω). Moreover
assume that TχΩ 6= 0.

Prove that for u ∈ {v ∈ L1(Ω), log v ∈ L1(Ω)} the function φ(u, g) = Tu −
g log(Tu+ 1) is convex, and that it fulfils the following coercivity condition

∫

Ω
(Tu− g log(Tu+ 1)) dx > ‖Tu‖1 − ‖g‖∞ · log ‖Tu+ 1‖1 .

[Hint: You may use the fact that for a concave function f : R → R on the real line we

have that f
(∫

Ω u(x) dx
)

>
∫

Ω f(u(x)) dx.]

Now, consider the following variational problem

min
u∈L1(Ω),log(u)∈L1(Ω)

{

α|Du|(Ω) +

∫

Ω
(Tu− g log(Tu+ 1)) dx

}

and prove existence of solutions for the above problem. When is a solution unique? Justify
all your steps.

[Hint: You may use, without proof, Rellich’s compactness theorem and the following

form of the Poincaré-Wirtinger inequality: For u ∈ BV (Ω), let

uø :=
1

|Ω|

∫

Ω
u(x) dx .

Then there exists a constant C > 0 such that

‖u− uø‖1 6 C|Du|(Ω) . ]

In the finite dimensional setting, that is Ω = {x1, . . . , xM}2, state (without proof)
what kind of noise distribution the data fidelity
∑

i,j φ(u(xi, xj), g(xi, xj)) models approximately?
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For g ∈ C(R2), bounded, consider the linear diffusion equation

ut = ∆u

u(x, t = 0) = g(x).

Give an explicit formula for the solution u(x, t) of this equation within the class of functions
that satisfy

|u(x, t)| 6 M ea|x|
2

, M, a > 0.

Relate such a solution at a time T > 0 with linear filtering of g with a Gaussian kernel of
standard deviation σ. Investigate the effect of Gaussian filtering in the frequency domain.

Now, consider the Perona-Malik equation

ut = div(c(|∇u|) ∇u)

u(x, t = 0) = g(x),

where c(y) = y ·e−
y2

2λ2 for a positive λ. Explain the dynamics of this equation in one space
dimension in terms of forward and backward diffusion in dependence of λ.

For u ∈ C∞(R2) and h > 0 let

meanh(u)(x) :=
u(x+ (h, 0)) + u(x− (h, 0)) + u(x+ (0, h)) + u(x− (0, h))

4
,

be the mean of u in a (vertical-horizontal) h-neighbourhood of x. Prove, that in a point
x0 where u(x0) = meanh(u)(x0) for all ∞ > h′ > h > 0 (with h′ fixed) we have that in
the limit as h → 0 the function u fulfils ∆u(x0) = 0. Assuming that Du(x0) 6= 0, state
(without proof) the differential equation for u in x0 that one receives when replacing the
mean by the median, that is

medianh(u)(x) = median value of the set {u(y), y ∈ Bx(h)},

where Bx(h) is a disc with radius h and centre x. Based on this differential equation what
can you say about the local shape of the level line of u that passes through x0?

4

Write an essay on image segmentation using the Mumford–Shah segmentation
model.
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