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SECTION I

1

The diffusion equation

∂u

∂t
=

∂2u

∂x2
, t > 0, x ∈ [0, 1],

given with zero Dirichlet boundary conditions and an initial condition at t = 0, is
discretised by the finite-difference method

−αun+1
m−1

+ (1 + 2α)un+1
m − αun+1

m+1
= unm, n > 0, m = 1, . . . ,M,

where ∆x = 1/(M +1) and the coefficient α is allowed to depend on the Courant number.

1. Determine α so that the method is of the highest possible order.

2. Carefully justifying your steps, find the range of Courant numbers for which the
highest-order method is stable.

2

Consider the two-stage implicit Runge–Kutta method with the Butcher tableau
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1. Determine the order of this method.

2. Is the method A-stable?

3. Is it algebraically stable?
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3

Let H be a Hilbert space, equipped with the inner product 〈 · , · 〉 and let L be a
bounded linear operator in H.

1. Define what is meant by L being self adjoint, elliptic and positive definite.

2. Suppose that L is positive definite. Prove that Lu = f is the Euler–Lagrange
equation of the variational problem I(v) = 〈Lv, v〉 − 2〈f, v〉 and that the weak
solution of Lu = f is the unique minimum of I.

3. Let p(x) > 0, q(x) > 0 for x ∈ [−1, 1] and set Lu = −(pu′)′ + qu, acting in an
appropriate Hilbert space (which you should describe) with zero Dirichlet boundary
conditions. Prove that L is positive definite.

4

The ODE system y′ = f(y), y(0) = y0, is solved by the two-step method

yn+2 − (1 + a)yn+1 + ayn = h(1− a)f(yn) +
h2

2
(3− a)

∂f(yn+2)

∂y
f(yn+2),

where a is a real constant.

1. Assuming without proof the validity of the Dahlquist Equivalence Theorem, deter-
mine the order and convergence for different values of a.

2. Letting a = 0, check whether the method is A-stable.
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5

The linear ODE

y′ = (A+B)y, t > 0, y(0) = y0,

is approximated by the Strang splitting

yn+1 = e
1

2
hAehBe

1

2
hAyn, n = 0, 1, . . . .

Prove that this is a second-order method.

Consider the convection-diffusion equation

∂u

∂t
=

∂2u

∂x2
+ α

∂u

∂x
, t > 0, x ∈ [−1, 1],

given with an initial condition at t = 0, x ∈ [−1, 1] and zero Dirichlet boundary conditions.
Both the space derivatives are discretised by second-order central differences and this
results in an ODE system of the form u′ = (A+B)u. What are the matrices A and B?

The semidiscretized system is solved with the Strang splitting. Is the outcome a
stable method?
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SECTION II

6

Describe the Engquist–Osher method for a single, one-dimensional, hyperbolic
nonlinear conservation law

∂u

∂t
+

∂f(u)

∂x
= 0.

Prove its stability, subject to suitable conditions.

7

Write an essay on stability analysis of partial differential equations of evolution
using Fourier analysis, inclusive of the influence of boundary conditions.
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