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a) Prove that every closed convex set C ⊆ R
n is the intersection of all closed half-spaces

that contain C.

b) State the central theorem about the Legendre-Fenchel transform and explain the most
important steps in the proof leading to the final relation between f∗∗ and cl conf . How
is the theorem in a) used in the proof?

c) Find the subdifferential of f(x) = max{a⊤x, b⊤x} for given a, b ∈ R
n. Carefully explain

each step. [Hint: It may be helpful to rewrite the maximum as a support function.]
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a) Assume f : Rn×R
m → R̄ is a given perturbation function. Define the primal and dual

objectives ϕ,ψ, primal and dual problems, and primal and dual marginal functions
p, q. State a sufficient condition for strong duality.

b) The inf-convolution F : Rn → R̄ of two functions h, k : Rn → R̄ is pointwise defined as

F (z) := inf
x∈Rn

{k(x) + h(z − x)}.

Assume that h, k are non-negative real-valued, i.e., h, k : Rn → [0,+∞), proper, lower
semi-continuous, and convex.

Show that for every z ∈ R
n we can find a perturbation function f : Rn ×R

n → R̄ with
marginal function p(u) = F (z + u). Prove that strong duality holds for every z ∈ R

n.

c) Compute the dual objective ψ and show that the inf-convolution can be expressed
through the conjugates as F = (k∗ + h∗)∗. How can we practically compute elements
of the subdifferential ∂F (z), assuming k∗ and h∗ are known?
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a) State Farkas’ Lemma and prove it by defining suitable cones and using the Legendre-
Fenchel transform. Explain any theorems that are used.

b) Consider the following system of inequalities for x, y ∈ R:

x > 0, y − x > −1, x+ y 6 −2.

Transform the system into a suitable standard form and use Farkas’ Lemma to prove
that it does not have a solution.

4

a) State the definition of forward- and backward-steps Fτf and Bτf in terms of set-valued
mappings and motivate their definition. Show that the backward step Bτf is at most
single-valued for every proper, lower semi-continuous, convex function f and τ > 0.
Carefully explain each step of the proof. In particular, point out where the assumptions
on f are used.

b) Assume that τ > 0 and f is proper, lower semi-continuous, and convex. Show that a
backward step Bτ(f∗) on the conjugate f∗ can be computed using only a single backward
step on f . Carefully explain each step.
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a) Consider the conic problem in standard form,

inf
x∈Rn

c⊤x s.t. Ax− b >K 0, (1)

where K is a proper, closed, convex, self-dual cone with associated canonical barrier
function F and A ∈ R

m×n has full column rank. State the dual problem. Define
the primal-dual central path and state a joint characterization of the points on the
primal-dual central path. Starting from this characterization, derive the Newton step
for tracing the central path.

b) Consider the constrained TV-L1 problem

min
u∈Rn

n
∑

i=1

|ui − fi|+ λ

n
∑

i=1

√

(

u⊤g
(1)
i

)2
+

(

u⊤g
(2)
i

)2
s.t. u ∈ [0, 1]n,

where f ∈ R
n discretizes the given image using n points, λ ∈ (0,∞) is a weighting

parameter, and the matrices G(j) = (g
(j)
1 , . . . , g

(j)
n )⊤, j = 1, 2 discretize the directional

derivatives of u in x- and y-direction.

Reformulate the problem in standard conic form (1), introducing additional variables
as necessary. You do not need to define A, b and c explicitly, it is sufficient to list all
constraints in a way that makes the linearity obvious.

To which class of conic problems does the reformulation belong? Find a suitable
canonical barrier function for this problem.
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