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For a 2π-periodic function f ∈ C(T), let sn(f) be its partial Fourier sum of degree
n, and let σn(f) =

1

n

∑n−1

i=0
si(f) be its Fejer sum of degree n− 1.

1) From the integral representation

sn(f, x) =
1

π

∫

T

Dn(x− t)f(t) dt, Dn(x) =
sin(n+ 1

2
)x

2 sin 1

2
x

,

derive the following expression for the Fejer kernel Fn

σn(f, x) =
1

π

∫

T

Fn(x− t)f(t) dt , Fn(x) =
1

2n

sin2 n
2
x

sin2 1

2
x
.

Hence prove that ‖σn(f)‖∞ 6 ‖f‖∞, carefully justifying each step.

2) Consider the so-called de la Vallee Poussin sum

vn,m(f) :=
1

m
(sn(f) + sn+1(f) + · · · + sn+m−1(f)) .

(a) Show that, for any trigonometric polynomial tn of degree n, and for any m, we
have

vn,m(tn) = tn .

(b) Find an expression for vn,m in terms of two Fejer sums σk and σℓ, and use it to
derive the bound

‖vn,m(f)‖∞ 6
(
2n
m

+ 1
)
‖f‖∞ ∀f ∈ C(T).

(c) Let n
m

6M . Combine (a) and (b) to establish the inequality

‖f − vn,m(f)‖∞ 6 2(M + 1)En(f) ∀f ∈ C(T) ,

where En(f) is the best uniform approximation to f from Tn, the space of all trigonometric
polynomials of degree n.
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Given ∆ = (ti)
n+k
i=1

, let ωi and ψi be the polynomials in Pk−1 defined by

ωi(x) := (x−ti+1) · · · (x−ti+k−1), ψi(x) :=
1

(k − 1)!
ωi(x) ,

and let (Ni)
n
i=1

be the corresponding B-spline sequence. From the Marsden identity

(x− t)k−1 =

n∑

i=1

ωi(x)Ni(t), tk 6 t 6 tn+1, ∀x ∈ R ,

show that any algebraic polynomial p ∈ Pk−1 has the B-spline expansion

p(t) =
n∑

i=1

λi(p)Ni(t), t ∈ [tk, tn+1] , (∗)

and express the functional λi(p) in terms of p, ψi and x ∈ R. Explain briefly why the
{λi(p)}ni=1

are independent of x.

Use expansion (∗) to prove that, for linear polynomials, we have

p(t) =

n∑

i=1

p(t∗i )Ni(t), ∀p ∈ P1 ,

where t∗i =
1

k−1
(ti+1 + · · ·+ ti+k−1).

3

For a knot sequence (ti)
n+k
i=1

⊂ [a, b] with distinct knots, let

Mi(t) := k[ti, . . . , ti+k](· − t)k−1
+ and Ni(t) := (ti+k − ti)[ti, . . . , ti+k](· − t)k−1

+

be the sequences of L1 and L∞-normalized B-splines, respectively.

a) Using properties of divided differences, prove that Mi is a piecewise-polynomial
function of degree k − 1 and global smoothness Ck−2, with knots (ti, . . . , ti+k) and with
finite support [ti, ti+k].

b) Using the Leibnitz rule for divided differences, or otherwise, derive the recurrence
formula for B-splines:

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1 +

ti+k − t

ti+k − ti+1

Ni+1,k−1 ,

where Ni,m is the L∞-normalized B-spline of order m with support [ti, ti+m].
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On C(I), the space of continuous functions on I = [−1, 1], the “tilde” operator
T : C(I) → C(T) is given by the rule f̃(θ) := f(cos θ), θ ∈ [0, 2π).

a) Prove that
ω(f̃ , t) 6 ω(f, t),

where ω(f, t) is the first modulus of continuity.

b) State the first Jackson theorem for periodic functions and deduce (justifying each
step) its analogue for approximation by algebraic polynomials of degree 6 n on [−1, 1]:

En(f) 6 c ω
(
f,

1

n

)
.

c) Prove that the best approximation to f0(x) =
√
1− x2 by algebraic polynomials

of degree n satisfies
En(f0) = O( 1

n
) .

Explain briefly why the inverse theorem, in the form given for trigonometric approxima-
tions, is not valid for the algebraic case.
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1) Let ∆ = (tj)
n+k
j=1

be a knot sequence such that tj < tj+k, and let Sk(∆) be the
space of splines of degree k − 1 spanned by the B-splines (Nj)

n
j=1 Let x = (xi)

n
i=1 be

interpolation points obeying the conditions

Ni(xi) > 0 , 1 6 i 6 n,

and let Px : C[a, b] → Sk(∆) be the map which associates with any f ∈ C[a, b] the spline
Px(f) from Sk which interpolates f at (xi). Prove that

1

dk
‖A−1

x
‖ℓ∞ 6 ‖Px‖L∞

6 ‖A−1
x

‖ℓ∞ ,

where Ax is the matrix (Nj(xi))
n
i,j=1

, and dk is the smallest constant such that

1

dk
‖a‖ℓ∞ 6 ‖

n∑

i=1

aiNi‖L∞
∀ a ∈ R

n .

2) Consider the case of quadratic interpolating splines on the uniform knot-sequence
(t1, t2, . . . , tn+3) = (1, 2, . . . , n+ 3) with the interpolating points

xi = ti+2 = i+ 2, i = 1, . . . , n .

Prove that ‖Px‖L∞
= O(n). Hence deduce that Px is not bounded uniformly in n. (The

inverse matrix A−1
x

should be found explicitly. You can use the fact that d3 = 3).
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(a) State the Chebyshev alternation theorem for the element of best uniform
approximation to a function f ∈ C[−1, 1] from Pn, the space of all algebraic polynomials
of degree n. Prove that the algebraic polynomial of best approximation is unique.

(b) Let Tn(x) = cosn arccos x be the Chebyshev polynomial of degree n, and let

f0(x) =

∞∑

k=0

akT3k(x), where ak > 0,

∞∑

k=0

ak <∞, x ∈ [−1, 1].

Prove that, for every n, the polynomial pn of best uniform approximation to f0 is given
by a partial sum of the series above, and determine the value En(f0) = ‖f − pn‖ of best
approximation in terms of ak.

(c) Derive the lethargy theorem: for any monotone decreasing sequence (ǫn)
∞

n=0,
with limit zero:

ǫ0 > ǫ1 > · · · > ǫn > · · · , ǫn → 0,

there is a continuous function fǫ ∈ C[−1, 1] such that

En(fǫ) > ǫn .
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