

MATHEMATICAL TRIPOS Part III

Wednesday, 5 June, 2013 9:00 am to 11:00 am

PAPER 60

DISTRIBUTION THEORY AND APPLICATIONS

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Define the spaces $\mathcal{D}'(\mathbf{R})$ and $\mathcal{D}(\mathbf{R})$, specifying the notion of convergence in each.

For $u \in \mathcal{D}'(\mathbf{R})$ define the distributional derivative u' and show that it is an element of $\mathcal{D}'(\mathbf{R})$. For $h \in \mathbf{R}$ define $\tau_h u$, the translation of u by h, and show that

 $\mathbf{2}$

$$\lim_{h \to 0} \frac{\tau_{-h}u - u}{h} = u' \quad \text{in } \mathcal{D}'(\mathbf{R}).$$

Find the most general solution in $\mathcal{D}'(\mathbf{R})$ to the equations

(a)
$$u'_1 = 0$$
, (b) $xu_2 = 0$.

Suppose $v \in \mathcal{D}'(\mathbf{R})$ satisfies the differential equation

$$-\frac{\mathrm{d}^{n}v}{\mathrm{d}x^{n}} + a_{n-1}\frac{\mathrm{d}^{n-1}v}{\mathrm{d}x^{n-1}} + \dots + a_{0}v = 0$$

in $\mathcal{D}'(\mathbf{R})$, where the $\{a_i\}_{i=0}^{n-1}$ are constants. Find the most general distributional solution to this equation and deduce that v is in fact a classical solution. Find the most general solution in $\mathcal{D}'(\mathbf{R})$ to the equation

$$-x\frac{\mathrm{d}^n u}{\mathrm{d}x^n} + a_{n-1}x\frac{\mathrm{d}^{n-1}u}{\mathrm{d}x^{n-1}} + \dots + a_0xu = 0.$$

$\mathbf{2}$

State and prove the Malgrange–Ehrenpries theorem for non-zero constant coefficient partial differential operators. Your proof should involve the construction of a suitable "Hörmander staircase".

Let L be an ordinary differential operator with constant coefficients and order $N \ge 1$. Use your construction to show that L has a fundamental solution of the form E = Hu, where H is the Heaviside function and u is such that Lu = 0.

UNIVERSITY OF

3

Write an essay on distributions defined via oscillatory integrals.

You should begin by defining the class of symbols $\text{Sym}(X, \mathbb{R}^k; N)$ and what it means for a function $\Phi: X \times \mathbb{R}^k \to \mathbb{R}$ to be a phase function. For a symbol *a* and phase function Φ you should give meaning to

3

$$I_{\Phi}(a) = \int e^{i\Phi(x,\theta)} a(x,\theta) \,\mathrm{d}\theta$$

and prove that this gives rise to an element of $\mathcal{D}'(X)$ of finite order.

Finally, you should state a theorem relating the singular support of $I_{\Phi}(a)$ to the zero set of $\nabla_{\theta} \Phi(x, \theta)$ and discuss its application with the linear initial value problem

$$\frac{\partial u}{\partial t} + \mathbf{c} \cdot \nabla_{\mathbf{x}} u = 0, \qquad u(\mathbf{x}, 0) = \delta_0(\mathbf{x})$$

where $(\mathbf{x}, t) \in \mathbf{R}^n \times (0, \infty)$ and $\mathbf{c} \in \mathbf{R}^n$ is constant.

END OF PAPER