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1

Define the spaces D′(R) and D(R), specifying the notion of convergence in each.

For u ∈ D′(R) define the distributional derivative u′ and show that it is an element
of D′(R). For h ∈ R define τhu, the translation of u by h, and show that

lim
h→0

τ−hu− u

h
= u′ in D′(R).

Find the most general solution in D′(R) to the equations

(a) u′1 = 0, (b) xu2 = 0.

Suppose v ∈ D′(R) satisfies the differential equation

−
dnv

dxn
+ an−1

dn−1v

dxn−1
+ · · ·+ a0v = 0

in D′(R), where the {ai}
n−1
i=0 are constants. Find the most general distributional solution

to this equation and deduce that v is in fact a classical solution. Find the most general
solution in D′(R) to the equation

−x
dnu

dxn
+ an−1x

dn−1u

dxn−1
+ · · ·+ a0xu = 0.

2

State and prove the Malgrange–Ehrenpries theorem for non-zero constant coefficient
partial differential operators. Your proof should involve the construction of a suitable
“Hörmander staircase”.

Let L be an ordinary differential operator with constant coefficients and order
N > 1. Use your construction to show that L has a fundamental solution of the form
E = Hu, where H is the Heaviside function and u is such that Lu = 0.
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Write an essay on distributions defined via oscillatory integrals.

You should begin by defining the class of symbols Sym(X,Rk;N) and what it means
for a function Φ : X×Rk → R to be a phase function. For a symbol a and phase function
Φ you should give meaning to

IΦ(a) =

∫
eiΦ(x,θ)a(x, θ) dθ

and prove that this gives rise to an element of D′(X) of finite order.

Finally, you should state a theorem relating the singular support of IΦ(a) to the
zero set of ∇θΦ(x, θ) and discuss its application with the linear initial value problem

∂u

∂t
+ c · ∇xu = 0, u(x, 0) = δ0(x)

where (x, t) ∈ Rn × (0,∞) and c ∈ Rn is constant.
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