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(a) State and prove the Cook-Levin Theorem.

(b) Let 2UN-SAT be the language of satisfiable boolean formulae in conjunctive normal
form in which at most 2 variables in each clause appear un-negated. An example of
such a formula is

(x1 ∨ x2) ∧ (¬x2 ∨ x4 ∨ x5) ∧ (¬x1 ∨ ¬x4) .

Show that 2UN-SAT is NP-complete.

2

(a) Define the complexity classes SPACE(s(n)) and NSPACE(s(n)) and prove Savitch’s
Theorem: for any function s : N → N such that s(n) > log2 n, NSPACE(s(n)) ⊆
SPACE(s(n)2).

(b) The k-layering G(k) of a directed graph G = (V,E) is the graph whose nodes are
indexed by pairs (v, i), where v ∈ V , 1 6 i 6 k, and there is an arc (u, i) → (v, j) if
and only if j = i+ 1 and either u = v or (u, v) ∈ E.

Let Cycle be the language of directed graphs G such that G contains a cycle, where
a cycle is a directed path whose final node is the same as its initial node.

By considering layerings, or otherwise, show that Cycle is NL-complete. You may
assume that Path is NL-complete, where Path is the language of triples (G, s, t)
such that there is a path in the directed graph G from node s to node t.

Part III, Paper 59



3

3

(a) Define the complexity classes SIZE(T (n)) and P/poly. Prove that P/poly 6= NP.

(b) Prove that, for any L ⊆ {0, 1}∗, L ∈ SIZE(O(n2n)).

(c) Let Circuit Value be the language of pairs (C, x), where x ∈ {0, 1}n (for some n)
and C is the description of an n-input circuit, such that C(x) = 1. Let the language
And-Not Circuit Value be defined similarly, but where C is restricted such that
all its gates are either AND or NOT gates.

Prove that And-Not Circuit Value is P-complete. [You may assume that
Circuit Value is P-complete.]

(d) Let Mod3 be the language {x ∈ {0, 1}∗ : x ≡ 0 (mod 3)}, where x is interpreted as
a non-negative integer written in binary.

Define the complexity class NC1 and show that Mod3 ∈ NC1. [Hint: 2m ≡
(−1)m(mod3).]

4

For f : {0, 1}n → {0, 1}, let D(f) denote the minimal depth of a decision tree that
computes f . f is said to be evasive if D(f) = n.

(a) Let wt(x) = |{i : xi = 1}|. Show that, if there is a decision tree of depth d < n
which computes f : {0, 1}n → {0, 1}, then

∑
x∈{0,1}n(−1)wt(x)f(x) = 0.

(b) An undirected graph G is said to be a star if there is a distinguished vertex v0 such
that every edge in G has v0 as an endpoint. For example, the graph on vertices
{1, 2, 3, 4} with edges {(1, 3), (1, 4)} is a star.

The function STARn : {0, 1}(
n

2
) → {0, 1} is defined as follows. The bits of each

G ∈ {0, 1}(
n

2
) are indexed by pairs of distinct integers (i, j), 1 6 i, j 6 n. G

corresponds to an undirected graph on n vertices, with bit (i, j) of G being set to
1 if there is an edge (i, j) in the graph. Then STARn(G) = 1 if and only if G is a
star.

Show that, for n > 3, STARn is evasive. [Hint: (a) may be useful.]

(c) Define the notion of certificate complexity and prove that the certificate complexity
of STARn is Ω(n2).
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