

MATHEMATICAL TRIPOS Part III

Tuesday, 4 June, 2013 $\,$ 1:30 pm to 3:30 pm

PAPER 59

COMPUTATIONAL COMPLEXITY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

- 2
- (a) State and prove the Cook-Levin Theorem.
- (b) Let 2UN-SAT be the language of satisfiable boolean formulae in conjunctive normal form in which at most 2 variables in each clause appear un-negated. An example of such a formula is

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_4 \lor x_5) \land (\neg x_1 \lor \neg x_4).$$

Show that 2UN-SAT is NP-complete.

$\mathbf{2}$

1

- (a) Define the complexity classes $\mathsf{SPACE}(s(n))$ and $\mathsf{NSPACE}(s(n))$ and prove Savitch's Theorem: for any function $s : \mathbb{N} \to \mathbb{N}$ such that $s(n) \ge \log_2 n$, $\mathsf{NSPACE}(s(n)) \subseteq \mathsf{SPACE}(s(n)^2)$.
- (b) The k-layering $G^{(k)}$ of a directed graph G = (V, E) is the graph whose nodes are indexed by pairs (v, i), where $v \in V$, $1 \leq i \leq k$, and there is an arc $(u, i) \to (v, j)$ if and only if j = i + 1 and either u = v or $(u, v) \in E$.

Let CYCLE be the language of directed graphs G such that G contains a cycle, where a cycle is a directed path whose final node is the same as its initial node.

By considering layerings, or otherwise, show that CYCLE is NL-complete. You may assume that PATH is NL-complete, where PATH is the language of triples (G, s, t)such that there is a path in the directed graph G from node s to node t. 3

- (a) Define the complexity classes SIZE(T(n)) and P/poly. Prove that $P/poly \neq NP$.
- (b) Prove that, for any $\mathcal{L} \subseteq \{0,1\}^*$, $\mathcal{L} \in \mathsf{SIZE}(O(n2^n))$.
- (c) Let CIRCUIT VALUE be the language of pairs (C, x), where $x \in \{0, 1\}^n$ (for some n) and C is the description of an n-input circuit, such that C(x) = 1. Let the language AND-NOT CIRCUIT VALUE be defined similarly, but where C is restricted such that all its gates are either AND or NOT gates.

Prove that AND-NOT CIRCUIT VALUE is P-complete. [You may assume that CIRCUIT VALUE is P-complete.]

(d) Let MOD3 be the language $\{x \in \{0, 1\}^* : x \equiv 0 \pmod{3}\}$, where x is interpreted as a non-negative integer written in binary.

Define the complexity class NC^1 and show that $MOD3 \in NC^1$. [*Hint:* $2^m \equiv (-1)^m \pmod{3}$.]

$\mathbf{4}$

For $f : \{0,1\}^n \to \{0,1\}$, let D(f) denote the minimal depth of a decision tree that computes f. f is said to be *evasive* if D(f) = n.

- (a) Let wt(x) = $|\{i : x_i = 1\}|$. Show that, if there is a decision tree of depth d < n which computes $f : \{0,1\}^n \to \{0,1\}$, then $\sum_{x \in \{0,1\}^n} (-1)^{\operatorname{wt}(x)} f(x) = 0$.
- (b) An undirected graph G is said to be a *star* if there is a distinguished vertex v_0 such that every edge in G has v_0 as an endpoint. For example, the graph on vertices $\{1, 2, 3, 4\}$ with edges $\{(1, 3), (1, 4)\}$ is a star.

The function $\operatorname{STAR}_n : \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ is defined as follows. The bits of each $G \in \{0,1\}^{\binom{n}{2}}$ are indexed by pairs of distinct integers $(i,j), 1 \leq i,j \leq n$. G corresponds to an undirected graph on n vertices, with bit (i,j) of G being set to 1 if there is an edge (i,j) in the graph. Then $\operatorname{STAR}_n(G) = 1$ if and only if G is a star.

Show that, for $n \ge 3$, STAR_n is evasive. [*Hint: (a) may be useful.*]

(c) Define the notion of *certificate complexity* and prove that the certificate complexity of $STAR_n$ is $\Omega(n^2)$.

END OF PAPER