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For any positive integer M , let QFTM denote the quantum Fourier transform mod
M .

(a) Consider an M -dimensional state space with orthonormal basis B = {| k〉 : k ∈ ZM}.
You may assume that QFTM , measurements in the basis B, and the basic arithmetic
operations of addition, multiplication and division modulo M may all be performed in
time O(poly(logM)).

Consider the function f : ZN → ZN defined by f(x) = ax mod N where 0 < a < N
has been chosen and is fixed. It is promised that f is periodic with period r which divides
N exactly. Describe a quantum algorithm that will identify r with a constant level of
probability (say 1/2) and which runs in poly(logN) time. You may use without proof any
results from classical number theory but they must be stated clearly.

(b) Consider an N dimensional state space with orthonormal basis {| i〉 : i ∈ ZN}. Let S
be the operation defined by S | i〉 = | i+ 1〉 for all i ∈ ZN (where + is addition modulo
N). Show that the states QFTN | k〉 for k ∈ ZN are eigenvectors of S.
Now let N = 4 and represent each basis state | j〉 with two qubits as |x〉 | y〉 where the
2-bit string xy is j written in binary. Using only the gates QFT4, its inverse and arbitrary

1-qubit phase gates Pξ =

(

1 0
0 ξ

)

with |ξ| = 1, show how to implement S.
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For any m let Bm denote the set of all m-bit strings. An oracle If for a
Boolean function f : Bn → B1 is defined to be the n-qubit operation with action
If | x〉 = (−1)f(x) | x〉 for all x ∈ Bn. Also write N = 2n.
Consider the following oracle problem:
Problem S:
Input: an oracle If for a Boolean function f : Bn → B1.
Promise: f takes value 1 exactly k times. Furthermore k is known.
We say that x is “good” if f(x) = 1.
Problem: find a good x value.

(i) By introducing |ψ0〉 = 1√
N

∑

x∈Bn
| x〉 and the n-qubit operation Iψ0

= I − 2 |ψ0〉 〈ψ0|
(with I here being the identity operation) describe, with brief justifications, a quantum
algorithm that will solve Problem S with probability at least 2/3, and which makes only

O

(

√

N
k

)

queries to the input oracle (where you may assume that k/N is small).

Show that if k = N/4 then a good x value may be obtained with certainty, with just one
query to the oracle.

(ii) State the Amplitude Amplification Theorem.

(iii) Suppose that for arbitrary 0 < p < 1, and for any 0 < p′ < p, we have a quantum
circuit C on n qubits with the following property:

if |ψ〉 =∑x∈Bn
ax | x〉 has

∑

x good |ax|2 = p

then C |ψ〉 =
∑

x∈Bn
bx | x〉 has

∑

x good |bx|2 = p′.

Show that there is a quantum algorithm that solves Problem S with certainty and makes

O

(

√

N
k

)

queries to the input oracle.
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Let x = x0x1 . . . xN−1 be an N -bit string with N = 2K being even. We may
think of x as the list of values of a function from ZN to {0, 1}. A quantum oracle Ox

for x is a unitary operation on a state space of dimension 2N whose action is defined
by Ox | i〉 | y〉 = | i〉 | y ⊕ xi〉, where i ∈ ZN , y ∈ {0, 1} and ⊕ denotes addition modulo 2.
Consider the following two oracle problems.
Problem A:
Input: an oracle Ox for some N -bit string x.
Promise: x is either a constant string, or a balanced string (the latter meaning that x
contains exactly K 0’s and K 1’s).
Problem: decide if x is balanced.
Problem B:
Same as problem A except that the promise is omitted i.e. the input Ox may be the oracle
for any N -bit string.

We have a universal set of quantum gates available and you may assume that any
desired unitary operation that is independent of x may be exactly implemented.

(a) Show that Problem A can be solved with certainty by a quantum algorithm that makes
only one query to the oracle Ox.

(b) To develop an algorithm for problem B, we write x̂i = (−1)xi and we will work on a
state space of dimension N2 with orthonormal basis states | i〉 | j〉 for i, j ∈ ZN . Consider
the following three computational steps:

Step 1: Make the state |ψ0〉 = 1√
N

∑N−1
i=0 | i〉 | 0〉 and then use one query to the oracle to

make

|ψ1〉 =
1√
N

N−1
∑

i=0

x̂i | i〉 | 0〉 .

Step 2: Consider a transformation U whose action on states | i〉 | 0〉 is given by

U : | i〉 | 0〉 → 1√
N

(

∑

k>i

| i〉 | k〉 −
∑

k<i

| k〉 | i〉+ | 0〉 | 0〉
)

.

Then by linearity the action of U on |ψ1〉 will be

|ψ2〉 = U |ψ1〉 =
(

1

N

N−1
∑

i=0

x̂i

)

| 0〉 | 0〉+
∑

i<j

(x̂i − x̂j)

N
| i〉 | j〉 .

[You may assume without proof that this formula is correct.]

Step 3: Measure |ψ2〉 to obtain an outcome (k, l) with k, l ∈ ZN .
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(i) Show that there exists a unitary transformation Ũ on the whole state space whose
action on the states | i〉 | 0〉 coincides with the action of U as given in step 2.

(ii) Suppose that the promise of Problem A is imposed. If we see (0, 0), respectively
(i, j) 6= (0, 0), as the measurement outcome in step 3, what can we deduce about the string
x?

(iii) Now returning to general input strings x and considering the possible measure-
ment outcomes (k, l), show that Problem B may be solved with certainty with at most
K = N/2 queries to the oracle in every case (by using a suitable extension of the three
steps above, or otherwise).
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(a) In this question you may assume the following two lemmas.

Lemma A: Let A and B be Hermitian matrices with ||A|| 6 η and ||B|| 6 η for some
real η 6 1 (where ||A|| denotes the spectral norm of A). Then

e−iAe−iB = e−i(A+B) +O(η2).

Lemma B: Let U1, . . . , UK and V1, . . . , VK be unitary matrices with ||Ui−Vi|| 6 η for all
i = 1, . . . ,K. Then ||U1 . . . UK − V1 . . . VK || 6 Kη.

Consider the following Hamiltonian on n qubits labelled as 0, 1, . . . , n− 1:

H =

n
∑

i=1

Xi−1 Zi

and let U = eiH . Here the operators X and Z are the standard 1-qubit Pauli operators and
Xj denotes the n-qubit operation of X acting on the jth qubit and the identity operation
on all other qubits (and similarly for Zj).

(i) Find ||X0 Z1||.

(ii) Let ǫ > 0 be given. Explain how an operation Ũ with ||U − Ũ || < ǫ may be
implemented by a poly(n) sized circuit of 2-qubit gates, and identify the degree of
the polynomial. You may assume that 12 + 22 + 32 + . . .+ (n− 1)2 = O(n3).

(b)

(i) For any Hamiltonian H and unitary operation W show that

W †eiHW = eiW
†HW

where † denotes the adjoint.

(ii) Consider the Boolean function f(x1 . . . xn) = x1 ⊕ . . . ⊕ xn where x1 . . . xn is an n-
bit string and ⊕ denotes addition mod 2. Describe a circuit of 2-qubit gates on n+1
qubits that implements the transformation | x1 . . . xn〉 | 0〉 → |x1 . . . xn〉 | x1 ⊕ . . .⊕ xn〉.

(iii) By considering a relationship between f and the n-qubit Hamiltonian Z ⊗ . . .⊗ Z,
or otherwise, show that V = exp(i Z ⊗ . . . ⊗ Z t), for any fixed t > 0, may be
implemented on n qubit lines (with possible use of further ancillary lines) by a
circuit of size O(n) of 1- and 2-qubit gates.

END OF PAPER
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