

### MATHEMATICAL TRIPOS Part III

Monday, 10 June, 2013 9:00 am to 11:00 am

### PAPER 58

### QUANTUM COMPUTATION

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# CAMBRIDGE

2

1

For any positive integer M, let  $QFT_M$  denote the quantum Fourier transform mod M.

(a) Consider an *M*-dimensional state space with orthonormal basis  $\mathcal{B} = \{ | k \rangle : k \in \mathbb{Z}_M \}$ . You may assume that QFT<sub>*M*</sub>, measurements in the basis  $\mathcal{B}$ , and the basic arithmetic operations of addition, multiplication and division modulo *M* may all be performed in time  $O(\text{poly}(\log M))$ .

Consider the function  $f : \mathbb{Z}_N \to \mathbb{Z}_N$  defined by  $f(x) = a^x \mod N$  where 0 < a < N has been chosen and is fixed. It is promised that f is periodic with period r which divides N exactly. Describe a quantum algorithm that will identify r with a constant level of probability (say 1/2) and which runs in poly(log N) time. You may use without proof any results from classical number theory but they must be stated clearly.

(b) Consider an N dimensional state space with orthonormal basis  $\{|i\rangle : i \in \mathbb{Z}_N\}$ . Let S be the operation defined by  $S |i\rangle = |i+1\rangle$  for all  $i \in \mathbb{Z}_N$  (where + is addition modulo N). Show that the states  $\operatorname{QFT}_N |k\rangle$  for  $k \in \mathbb{Z}_N$  are eigenvectors of S.

Now let N = 4 and represent each basis state  $|j\rangle$  with two qubits as  $|x\rangle |y\rangle$  where the 2-bit string xy is j written in binary. Using only the gates  $QFT_4$ , its inverse and arbitrary 1-qubit phase gates  $P_{\xi} = \begin{pmatrix} 1 & 0 \\ 0 & \xi \end{pmatrix}$  with  $|\xi| = 1$ , show how to implement S.

# UNIVERSITY OF CAMBRIDGE

 $\mathbf{2}$ 

For any m let  $B_m$  denote the set of all m-bit strings. An oracle  $I_f$  for a Boolean function  $f : B_n \to B_1$  is defined to be the n-qubit operation with action  $I_f | x \rangle = (-1)^{f(x)} | x \rangle$  for all  $x \in B_n$ . Also write  $N = 2^n$ . Consider the following oracle problem:

#### Problem S:

Input: an oracle  $I_f$  for a Boolean function  $f: B_n \to B_1$ .

Promise: f takes value 1 exactly k times. Furthermore k is known.

We say that x is "good" if f(x) = 1.

Problem: find a good x value.

(i) By introducing  $|\psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{x \in B_n} |x\rangle$  and the *n*-qubit operation  $I_{\psi_0} = I - 2 |\psi_0\rangle \langle\psi_0|$  (with *I* here being the identity operation) describe, with brief justifications, a quantum algorithm that will solve Problem S with probability at least 2/3, and which makes only  $O\left(\sqrt{\frac{N}{k}}\right)$  queries to the input oracle (where you may assume that k/N is small).

Show that if k = N/4 then a good x value may be obtained with certainty, with just one query to the oracle.

(ii) State the Amplitude Amplification Theorem.

(iii) Suppose that for arbitrary 0 , and for any <math>0 < p' < p, we have a quantum circuit C on n qubits with the following property:

if 
$$|\psi\rangle = \sum_{x \in B_n} a_x |x\rangle$$
 has  $\sum_{x \text{ good}} |a_x|^2 = p$ 

then  $C |\psi\rangle = \sum_{x \in B_n} b_x |x\rangle$  has  $\sum_{x \text{ good }} |b_x|^2 = p'$ .

Show that there is a quantum algorithm that solves Problem S with *certainty* and makes  $O\left(\sqrt{\frac{N}{k}}\right)$  queries to the input oracle.

# CAMBRIDGE

3

Let  $\mathbf{x} = x_0 x_1 \dots x_{N-1}$  be an N-bit string with N = 2K being even. We may think of  $\mathbf{x}$  as the list of values of a function from  $\mathbb{Z}_N$  to  $\{0, 1\}$ . A quantum oracle  $O_{\mathbf{x}}$ for  $\mathbf{x}$  is a unitary operation on a state space of dimension 2N whose action is defined by  $O_{\mathbf{x}} |i\rangle |y\rangle = |i\rangle |y \oplus x_i\rangle$ , where  $i \in \mathbb{Z}_N$ ,  $y \in \{0, 1\}$  and  $\oplus$  denotes addition modulo 2. Consider the following two oracle problems.

#### Problem A:

Input: an oracle  $O_{\mathbf{x}}$  for some N-bit string  $\mathbf{x}$ .

Promise:  $\mathbf{x}$  is either a constant string, or a balanced string (the latter meaning that  $\mathbf{x}$  contains exactly K 0's and K 1's).

Problem: decide if  $\mathbf{x}$  is balanced.

#### Problem B:

Same as problem A except that the promise is omitted i.e. the input  $O_{\mathbf{x}}$  may be the oracle for any N-bit string.

We have a universal set of quantum gates available and you may assume that any desired unitary operation that is independent of  $\mathbf{x}$  may be exactly implemented.

(a) Show that Problem A can be solved with certainty by a quantum algorithm that makes only one query to the oracle  $O_{\mathbf{x}}$ .

(b) To develop an algorithm for problem B, we write  $\hat{x}_i = (-1)^{x_i}$  and we will work on a state space of dimension  $N^2$  with orthonormal basis states  $|i\rangle |j\rangle$  for  $i, j \in \mathbb{Z}_N$ . Consider the following three computational steps:

**Step 1**: Make the state  $|\psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} |i\rangle |0\rangle$  and then use one query to the oracle to make

$$|\psi_1\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} \hat{x}_i |i\rangle |0\rangle.$$

**Step 2**: Consider a transformation U whose action on states  $|i\rangle |0\rangle$  is given by

$$U: |i\rangle |0\rangle \to \frac{1}{\sqrt{N}} \left( \sum_{k>i} |i\rangle |k\rangle - \sum_{k$$

Then by linearity the action of U on  $|\psi_1\rangle$  will be

$$|\psi_2\rangle = U |\psi_1\rangle = \left(\frac{1}{N} \sum_{i=0}^{N-1} \hat{x}_i\right) |0\rangle |0\rangle + \sum_{i < j} \frac{(\hat{x}_i - \hat{x}_j)}{N} |i\rangle |j\rangle.$$

[You may assume without proof that this formula is correct.]

**Step 3**: Measure  $|\psi_2\rangle$  to obtain an outcome (k, l) with  $k, l \in \mathbb{Z}_N$ .

# UNIVERSITY OF

5

(i) Show that there exists a *unitary* transformation  $\tilde{U}$  on the whole state space whose action on the states  $|i\rangle |0\rangle$  coincides with the action of U as given in step 2.

(ii) Suppose that the promise of Problem A is imposed. If we see (0,0), respectively  $(i,j) \neq (0,0)$ , as the measurement outcome in step 3, what can we deduce about the string **x**?

(iii) Now returning to general input strings **x** and considering the possible measurement outcomes (k, l), show that Problem B may be solved with certainty with at most K = N/2 queries to the oracle in every case (by using a suitable extension of the three steps above, or otherwise).

## CAMBRIDGE

4

(a) In this question you may assume the following two lemmas.

**Lemma A:** Let A and B be Hermitian matrices with  $||A|| \leq \eta$  and  $||B|| \leq \eta$  for some real  $\eta \leq 1$  (where ||A|| denotes the spectral norm of A). Then

$$e^{-iA}e^{-iB} = e^{-i(A+B)} + O(\eta^2)$$

**Lemma B:** Let  $U_1, \ldots, U_K$  and  $V_1, \ldots, V_K$  be unitary matrices with  $||U_i - V_i|| \leq \eta$  for all  $i = 1, \ldots, K$ . Then  $||U_1 \ldots U_K - V_1 \ldots V_K|| \leq K\eta$ .

Consider the following Hamiltonian on n qubits labelled as  $0, 1, \ldots, n-1$ :

$$H = \sum_{i=1}^{n} X_{i-1} Z_i$$

and let  $U = e^{iH}$ . Here the operators X and Z are the standard 1-qubit Pauli operators and  $X_j$  denotes the *n*-qubit operation of X acting on the  $j^{\text{th}}$  qubit and the identity operation on all other qubits (and similarly for  $Z_j$ ).

- (i) Find  $||X_0 Z_1||$ .
- (ii) Let  $\epsilon > 0$  be given. Explain how an operation  $\tilde{U}$  with  $||U \tilde{U}|| < \epsilon$  may be implemented by a poly(n) sized circuit of 2-qubit gates, and identify the degree of the polynomial. You may assume that  $1^2 + 2^2 + 3^2 + \ldots + (n-1)^2 = O(n^3)$ .

(b)

(i) For any Hamiltonian H and unitary operation W show that

$$W^{\dagger}e^{iH}W = e^{iW^{\dagger}HW}$$

where *†* denotes the adjoint.

- (ii) Consider the Boolean function  $f(x_1 \dots x_n) = x_1 \oplus \dots \oplus x_n$  where  $x_1 \dots x_n$  is an *n*bit string and  $\oplus$  denotes addition mod 2. Describe a circuit of 2-qubit gates on n+1qubits that implements the transformation  $|x_1 \dots x_n\rangle |0\rangle \rightarrow |x_1 \dots x_n\rangle |x_1 \oplus \dots \oplus x_n\rangle$ .
- (iii) By considering a relationship between f and the *n*-qubit Hamiltonian  $Z \otimes \ldots \otimes Z$ , or otherwise, show that  $V = \exp(i Z \otimes \ldots \otimes Z t)$ , for any fixed t > 0, may be implemented on *n* qubit lines (with possible use of further ancillary lines) by a circuit of size O(n) of 1- and 2-qubit gates.

### END OF PAPER

Part III, Paper 58