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(a) The dynamics of a quantum particle of mass m moving in a potential V (r) is governed
by the time-dependent Schrödinger equation

i~
∂ψ

∂t
= −

~2

2m
∇2ψ + V (r)ψ. (1)

(i) Write ψ(r, t) in terms of its modulus R(r, t) and phase S(r, t), and derive two
non-linear differential equations for R and S.

(ii) Explain the assumptions of the de Broglie-Bohm Pilot Wave Theory in the
context of this problem. By imposing the guidance condition v = ~

m∇S, where
v = d r/d t is the velocity of the particle, use the result of (i) to show that

d(mv)

dt
= −∇[V (r) +Q(R)], (2)

where the form of Q is to be found explicitly.

(b) A particle moves in two dimensions in a circularly symmetric potential. Consider
time-independent Schrödinger equation

−
~
2

2m
∇2ψ + V (r)ψ = Eψ. (3)

(i) Working in plane polar coordinates (r, φ) separate (3) into the radial and angular
parts, and show that the wave function of a stationary state has the form
ψ = (2π)−1/2f(r) exp [ikφ], where k is an integer and f(r) is a real function
of r. [The wave function is normalized and single-valued.]

(ii) Hence find the particle’s velocity (speed and direction) predicted by the de
Broglie-Bohm theory.

[ In polar coordinates ∇2 = 1

r
∂
∂ r

(

r ∂∂r
)

+ 1

r2
∂2

∂φ2 , ∇· =
(

∂
∂ r ,

1

r
∂
∂ φ ,

∂
∂ z

)

]
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(a) State EPR’s criterion for identifying an element of physical reality and explain the
assumptions of local hidden variables (LHV).

(b) Consider an experiment in which two space-like separated parties, Alice and Bob,
perform measurements on their local d-level systems, which interacted in the past.
We assume that each party may choose one out of N different measurements, and
that each measurement Ak of Alice and Bl of Bob (k, l = 1, . . . , N) may have d
possible outcomes: Ak, Bl = 0, . . . , d−1. The experiment is characterised by the joint
probabilities P (Ak = a,Bl = b) that Alice’s and Bob’s measurement, Ak and Bl, have
outcomes a and b respectively.

Let [X] denote Xmodulo d and

〈X〉 = P (X = 1) + 2P (X = 2) + . . . + (d− 1)P (X = d− 1)

be the average value of the random variable X ∈ {0, . . . , d− 1}.

Show that the assumption of existence of a deterministic local hidden variables model
for the correlations between the two systems implies that

〈[A1−B1]〉+〈[B1−A2]〉+〈[A2−B2]〉+. . .+〈[AN−BN ]〉+〈[BN−A1−1]〉 > d−1 . (1)

(c) For the special case of d = 2 and N = 2 consider the quantum state

|ψ〉AB = α|00〉AB + β|11〉AB ,

where α and β are real amplitudes.

For projective measurements A1, A2, B1 and B2 in respective bases

( |0〉A, |1〉A ) ,
(

cos
π

4
|0〉A + sin

π

4
|1〉A, sin

π

4
|0〉A − cos

π

4
|1〉A

)

,
(

cos
π

6
|0〉B + sin

π

6
|1〉B , sin

π

6
|0〉B − cos

π

6
|1〉B

)

,
(

sin
π

6
|0〉B + cos

π

6
|1〉B , cos

π

6
|0〉B − sin

π

6
|1〉B

)

determine the condition, which α and β must satisfy in order for the measurement
statistics to violate the inequality (1).
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Alice and Bob (located at xA and xB respectively) share a maximally entangled
state |Φ+〉d1d2 = 1√

2
(| ↑z〉d1 | ↑z〉d2 + | ↓z〉d1 | ↓z〉d2) of two spin-1

2
particles d1 and d2. In

addition, they hold spin-1
2
particles A and B prepared in advance by a third party in an

unknown state |ψ〉AB . (In the following it is assumed that Alice and Bob each complete
their local operations and measurements during time ∆t≪ L/c, where L = |xA − xB|.)

(a) Describe an explicit protocol which allows Alice and Bob to perform an instantaneous
non-demolition verification that |ψ〉AB is a state of zero z-component of the spin.

(b) Write down the product eigenstates and eigenvalues of the operator

(σAz ⊗ I
B + I

A ⊗ σBz )mod 4 (1)

and use the result obtained in (a) to show how to perform an instantaneous non-
demolition measurement of (1).

(c) An operator on the tensor product HA ⊗HB has the following eigenstates

|Φ+

θ 〉 = cos θ| ↑z↑z〉AB + sin θ | ↓z↓z〉AB

|Φ−
θ 〉 = sin θ | ↑z↑z〉AB − cos θ| ↓z↓z〉AB

|Ψ+

θ 〉 = cos θ| ↑z↓z〉AB + sin θ | ↓z↑z〉AB

|Ψ−
θ 〉 = sin θ | ↑z↓z〉AB − cos θ| ↓z↑z〉AB ,

(2)

where 0 6 θ 6 π/4. Consider a hypothetical instantaneous non-demolition measure-
ment of this operator.

(i) Show that the possibility of such operation would contradict relativistic causality
unless θ = 0, π/4.

(ii) Suggest and describe methods for realising such measurement in cases when
θ = 0 and θ = π/4. [For θ = π/4 you may use the results obtained in parts (a)
and (b). Assume that Alice and Bob share two maximally entangled states of
the type |Φ+〉d1d2 as a resource.]
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Zurek’s decoherence model constitutes in a two-level measurement device D being
monitored by a “bath” E of N spins via the interaction Hamiltonian

HDE = −σDz ⊗

N
∑

k=1

gkσ
k
z ,

where gk > 0 are coupling constants and σz are Pauli matrices, which are defined with
respect to the basis states of the device {|0〉, |1〉} and the spins {| ↑k〉, | ↓k〉} as their
eigenstates.

Initially, at t = 0, D is in the state a|0〉D + b|1〉D and the bath E is in the state

|Ψ(0)〉E =
N
⊗

k=1

(αk| ↑k〉+ βk| ↓k〉),

which is normalized.

(a) Calculate the reduced density matrix ρD at t > 0 and show that off diagonal terms
take the form ab∗z(t) and a∗bz∗(t), where z(t) is the decoherence factor. You should
obtain an explicit expression for z(t). [You may assume ~ = 1.]

(b) Find z(t) for the case when all the spins are initially aligned along z-axis, that is when
βk = 0 for all k. Hence deduce the value of |z(t)|2. Comment on this result.

(c) Find z(t) for the case when all the spins initially lie in x− y plane.

(i) For N = 3 and g1 = π/2, g2 = g3 = π/4, sketch z(t) for 0 6 t 6 4. Comment.

(ii) The coupling constants are uniformly independently distributed in the interval
[0, a], a > 0. Show that for N ≫ 1, z(t) tends to zero with time. Comment.
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