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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u ,

∂p

∂t
+ u · ∇p = −γp∇ · u ,

ρ

(

∂u

∂t
+ u · ∇u

)

= −ρ∇Φ−∇p+
1

µ0
(∇×B)×B ,

∂B

∂t
= ∇× (u×B) ,

∇2Φ = 4πGρ .

You may assume that for any vector C

(∇×C)×C = C · ∇C−
1

2
∇(|C|2) ,

for any vectors C and D

∇× (C×D) = −D∇ ·C+C∇ ·D−C · ∇D+D · ∇C ,

and that for u = (ur, uθ, uφ) in spherical polar coordinates (r, θ, φ)

∇ · u =
1

r2
∂(r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂uφ
∂φ

.
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a) A stationary magnetized gas, governed by the ideal MHD equations for constant γ
and without gravity, is such that ρ, p and B are constant. Suppose it undergoes linear
adiabatic perturbation such that p→ p+ δp, ρ→ ρ+ δρ and B → B+ δB. The quantities
δp, δρ and δB are the perturbations to the corresponding state variables and the associated
Lagrangian displacement is ξ. Show that linearization of the ideal MHD equations gives

δρ = −ρ∇ · ξ, δp = −γp∇ · ξ, δB = B · ∇ξ −B∇ · ξ, and

ρ
∂2ξ

∂t2
= −∇

(

δp +
δB ·B

µ0

)

+
B · ∇δB

µ0
.

The space and time dependence of the perturbations is through a factor of the form
exp(i(k · r − ωt)), where k is the wave vector and ω the wave angular frequency. Show
that

ρω2ξ = k

((

γp+
|B|2

µ0

)

(k · ξ)−
(B · k)(B · ξ)

µ0

)

+
(B · k)((B · k)ξ −B(k · ξ))

µ0

Show further that when k·ξ = 0 andB·ξ = 0, this equation admits solutions corresponding
to Alfvén waves that are governed by the dispersion relation ω2 = (k · va)

2 and give an
expression for the phase velocity va.

By finding a pair of simultaneous equations for k·ξ and B·ξ, or otherwise, show that there
are solutions corresponding to two additional waves whose phase speeds, vp, are given by

v2p =
1

2
(v2s + v2a)±

√

(

1

4
(v2s + v2a)

2 − v2sv
2
a cos

2 θ

)

,

where vs =
√

γp/ρ is the adiabatic sound speed, va = |va|, and θ is the angle between k
and B. Briefly describe the properties of these waves.

b) Show that in Cartesian coordinates, (x, y, z), there are solutions of the full nonlinear
ideal MHD equations for which ρ and p are constant and for which u and B are of the
form

u = (ux(z, t), uy(z, t), 0) and B = (Bx(z, t), By(z, t), Bz),

where Bz is constant, provided that B2
x +B2

y is constant. Show also that

∂2W

∂t2
=

B2
z

µ0ρ

∂2W

∂z2
,

where W is either Bx or By. Suggest possible functional forms for Bx and By.
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2

a) An unmagnetized ideal gas with constant γ is such that, adopting Cartesian coordinates
(x, y, z), u = (0, 0, u(z, t)) and p and ρ depend only on z and t. Gravity is negligible. Show
that the equations governing the conservation of mass, momentum and energy may be
expressed in the conservation law form

∂U

∂t
+
∂F

∂z
= 0 ,

and give expressions for the quantities U and F in each case.

b) A stationary shock at z = 0 separates region 1 (z > 0, where ρ = ρ1, p = p1 and
u = u1) from region 2 (z < 0, where ρ = ρ2, p = p2 and u = u2).

Use the statements of the conservation laws to derive the jump conditions (Rankine-
Hugoniot relations) in the form

ρ2u2 = ρ1u1 ,

p2 + ρ2u
2

2 = p1 + ρ1u
2

1 ,

u2(ρ2
u2
2

2
+ γp2/(γ − 1)) = u1(ρ1

u2
1

2
+ γp1/(γ − 1)) .

Use the above jump conditions to show that

ρ2
ρ1

=
u1
u2

=
(γ + 1)M2

1

(γ − 1)M2

1
+ 2

and
p2
p1

=
2γM2

1
− (γ − 1)

γ + 1
,

where M2
1
= u2

1
/(γp1/ρ1).

c) Now consider a shock front moving in the z direction with speed u1 into a stationary
medium with density ρ1. Show that in the strong shock limit of large M1, the post-shock
density and pressure are ρ2 = ((γ + 1)/(γ − 1))ρ1 and p2 = 2ρ1u

2
1
/(γ + 1), respectively.

A plane blast wave moving in the z direction into a stationary medium with ρ = ρ1 and
negligible pressure is generated by the instantaneous release of an energy per unit area,
E, on the plane z = 0 at t = 0. The location of the shock front is given by z = Z(t).

Assume that a similarity solution of the form

ρ = ρ1f(η), p = ρ1Ż
2g(η) and u = Żh(η)

exists behind the shock for appropriate functions f, g and h, with the similarity variable
η = z/Z(t). Using the fact that the energy per unit area of the post-shock flow is conserved,
show that the location of the shock is given by

Z(t) = C

(

E

ρ1

)1/3

t2/3,

where C is a constant.
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A steady state axisymmetric isothermal magnetohydrodynamic flow under gravity
is such that the magnetic field is purely poloidal and may be written in the form

B = (BR, 0, Bz) = −
1

R
eφ ×∇ψ ,

in cylindrical coordinates (R,φ, z). Here ψ is the magnetic flux function and eφ is the unit
vector in the azimuthal direction. The velocity is of the form u = (uR, 0, uz). Show that

u =
kB

ρ
,

where ρ is the density and k(ψ) is a function of ψ alone.

By considering the conservation of mass for a stream tube taking the form of a volume
localised around a stream line with no inflow or outflow, and with infinitesimal cross
sectional area A through which the interior flow is normal, deduce that A ∝ 1/|B|.

Show further from the equation of motion that

1

2
|u|2 +Φ+ ln(ρ)c2s = ǫ ,

where cs is the isothermal sound speed and ǫ(ψ) is a function of ψ alone. Deduce that

(c2s − |u|2)B · ∇ρ = −ρ
[

B · ∇Φ+ |u|2B · ∇(ln(|B|)
]

.

Accretion takes place through a slender column centred on the z axis, for z > R∗, onto the
polar region of a central star of mass M∗ and radius R∗. The normal cross-sectional area
of the column where it joins the star is A∗. It is assumed that the radial component of the
magnetic field is small enough that it can be neglected. Thus the motion can be taken to
be in the z direction with B = (0, 0, Bz), where Bz = B∗R

3
∗
/z3 and Φ = −GM∗/z. Here

B∗ is the magnetic feld at the stellar surface.

Show that the flow has a critical point where u = cs and z = zs, with zs = GM∗/(3c
2
s). If

the flow at large z has a negligible speed with the density approaching ρ = ρ∞, show that
the density at the critical point is ρs = exp(5/2)ρ∞. Show further that the accretion rate
onto the star is given by

Ṁ = ρ∞csA∗ exp(5/2)

(

GM∗

3c2sR∗

)3

.

Part III, Paper 52 [TURN OVER



6

4

A non magnetic spherical star in hydrostatic equilibrium, such that in a spherical
polar coordinate system (r, θ, φ) with origin at the centre of the star, p = p(r) and ρ = ρ(r),
undergoes linear adiabatic perturbations such that ρ → ρ+ δρ(r, t) and p → p + δp(r, t),
where δρ and δp are the perturbations to the density and pressure, respectively.

The adiabatic index, γ, varies with location in the star, thus γ = γ(r). The velocity
perturbation is u = (u(r, t), 0, 0) and the gravitational potential perturbation is δΦ(r, t).
Show that these are connected by the relation

∂2(δΦ)

∂r∂t
= −4πGρu .

By linearizing the equation of motion, show that

ρ
∂2u

∂t2
=
∂ (γp∆u)

∂r
−

4u

r

dp

dr
,

where ∆u = (1/r2)d(r2u)/dr.

If u(r, t) = rξ(r) exp(−iωt), show that ξ(r) satisfies the equation

ω2ρr4ξ = −
d

dr

(

γpr4
dξ

dr

)

+ ξr3
d

dr
((4− 3γ)p) .

Show that if p vanishes at the surface of the star, r = Rs, then ω
2 is an eigenvalue of a

self-adjoint operator. Use this to write down a variational expression that can be used to
determine whether the star is stable to radial perturbations. Show that the star will be
unstable if

∫ Rs

0

r2p(4− 3γ)dr > 0.

END OF PAPER
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