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A particle of rest mass m with conserved energy E = m, falls inwards towards a
Schwarzschild black hole of mass M . The particle moves in the equatorial plane θ = π

2 ,

with 4-velocity uµ = dxµ

dτ
, τ being proper time measured along its world line. Show that

uµ =
( r

r − 2M
,− 1

r
3

2

√

2Mr2 − h2(r − 2M), 0,
h

r2

)

,

where h is the conserved angular momentum per unit mass.

Hence show that if the particle is to reach the horizon, then

|h| 6 4M .

Two such particles moving in the same equatorial plane, and having equal rest
masses, but different 4-velocities uµ1 , u

µ
2 , and angular momenta per unit mass h1, h2 collide

at a radius r.

Assuming that their centre of mass energy Ecom is given by

E2
com = −m2gµν

(

u
µ
1 + u

µ
2

)(

uν1 + uν2
)

,

show that
E2

com = 2m2
(

1− gµνu
µ
1u

ν
2

)

.

and hence that

E2
com =

2m2

r2(r − 2M)
×

[

2r2(r −M)− h1h2(r − 2M)−
√

2Mr2 − h21(r − 2M)
√

2Mr2 − h22(r − 2M)
]

. (1)

Show that the limit of the right hand side of (1) as r → 2M is

m2
(

4 +
(h1 − h2)

2

4M2

)

.

Hence show that the centre of mass energy of the two particles at the horizon of the black
hole can be no larger than m

√
20.
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If Kµ is a Killing vector field, show that

2∇βKγ = ∂βKγ − ∂γKβ , (1)

and
Kα

(

∇βKγ
)(

∇βKγ

)

= 3
(

∇βKγ
)

K[α∇βKγ] − 2
(

∇σKα

)(

Kτ∇τK
σ
)

. (2)

Deduce from (2) that if Kα has a Killing horizon with surface gravity κ then

κ2 = −1

2

(

∇βKγ
)(

∇βKγ

)

.

Using both (1) and (2) calculate κ for a spherically symmetric metric of the form

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2

(

dθ2 + sin2 θdφ2
)

,

where the horizon is at r = r+ at which A(r+) = 0, B(r+) = 0 , A′(r+) 6= 0 , B′(r+) 6= 0
and ′ denotes differentiation with respect to r.

Hence show that the “Wick rotated” Riemannian metric

ds2 = A(r)dτ2 +
dr2

B(r)
+ r2

(

dθ2 + sin2 θdφ2
)

,

will be free of a conical singularity at r = r+ provided the coordinate τ is taken to have
period 2π

κ
.

Indicate briefly the significance of this fact for the theory of Black Hole Thermody-
namics.
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The metric of a globally static asymptotically flat spacetime (with no horizon) may
be cast in the form

ds2 = −e2U(xk)dt2 + e−2U(xk)γij(x
k)(xk)dxidxj

with i, j, k = 1, 2, 3 and U(xk) a bounded function of the spatial coordinates xk which
tends to zero at infinity. The vacuum Einstein equations imply that

(3)Rij = 2∂iU∂jU ,

where (3)Rij is the Ricci tensor of the 3-metric γij .

Show from the Bianchi identity for (3)Rij that U satisfies γij∇i∇jU = 0, where ∇i

is the Levi-Civita covariant derivative with respect to the metric γij.

Show by multiplying γij∇i∇jU by U and integrating by parts, that if γij is a
complete non-singular Riemannian metric and there is no inner boundary, then U = 0
everywhere, and hence that (3)Rij = 0.

Given that in 3 dimensions the Riemann tensor (3)Rijpq and Ricci tensor (3)Rij are
related by

(3)Rijpq = γip
(3)Sjq − γiq

(3)Sjp − γjp
(3)Siq + γjq

(3)Sip

with (3)Siq =
(3) Riq − 1

4γiqγ
rs (3)Rrs, show that the only asymptotically flat, non-singular

globally static solution of the four-dimensional vacuum Einstein equations is Minkowski
spacetime.

How does this statement change when horizons are allowed?
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A Hermitian scalar quantum field Φ̂ has two expansions

Φ̂ =
(

∑

i

âipi + â
†
i p̄i

)

=
∑

i

(

â′ip
′
i + â′

†

i p̄
′
i

)

,

where

[

âi, â
†
j

]

=
[

â′i, â′
†

j

]

= δij
[

âi, âj
]

=
[

â′i, â′j
]

= 0 ,

and pi, p
′
i are appropriately normalized complex valued solutions of the covariant Klein-

Gordon equation and p̄i is the complex conjugate of pi and p̄′i is the complex conjugate of
p′i . Assuming

â′i =
∑

j

(

αij âj + βij â
†
j

)

,

give conditions on αij and βij ensuring that â′i and â′
†

i satisfy the canonical commutation

relations, given that âi and â
†
i satisfy the canonical commutation relations. If

âi =
∑

j

(

Aij â′j +Bij â′
†

j

)

,

give expressions for Aij and Bij in terms of αij and βij .

Explain how αij and βij may be obtained from the relation between the solutions
pi and p′i .

Given that the system is in the state |0〉 such that âi|0〉 = 0, calculate 〈0|â′†i â′i|0〉
and give its interpretation.

Show that if â′i|0′〉 = 0, then |0〉 is some multiple of eF̂ |0′〉, where

F̂ =
1

2

∑

i

∑

j

Mij â′
†

i â
′
†

j

and Mij should be given in terms of of Aij and Bij.

Illustrate your results by giving a brief sketch of Hawking’s derivation of black hole
radiation.
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