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A particle of rest mass m with conserved energy E = m, falls inwards towards a

Schwarzschild black hole of mass M. The particle moves in the equatorial plane § = Z

2
with 4-velocity u* = ‘5’:—:, T being proper time measured along its world line. Show that

r Ry Yy Y sy v S W

e —_
b (’I“—QM’ r2 7“2)’

where h is the conserved angular momentum per unit mass.

Hence show that if the particle is to reach the horizon, then

Ih| < AM .

Two such particles moving in the same equatorial plane, and having equal rest
masses, but different 4-velocities v/, uf, and angular momenta per unit mass hy, hy collide
at a radius r.

Assuming that their centre of mass energy Feom is given by

Bl = —m?g" (uf + ub) (uf +uj)
show that
E2 . =2m*(1 — guufu).
and hence that
2m?
E2 = - [22 — M) — hihao(r — 2M) —
com 7"2(7”' — 2M) X |ar (7“ ) 1 Q(T )
\/2Mr? — B3 (r — 20M)\/2Mr? — h3(r - 21)] (1)

Show that the limit of the right hand side of (1) as r — 2M is

(h1 — hg)?

m2(4+ e )

Hence show that the centre of mass energy of the two particles at the horizon of the black
hole can be no larger than m/20.
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If K* is a Killing vector field, show that
2VgK, = 0K, — 0,K3, (1)
and
Ko (VPEY)(VsK,) = 3(VPK") K[, VsK, — 2(V,.Ko) (K'V.K). (2)

Deduce from (2) that if K has a Killing horizon with surface gravity s then
1
@ = LV (VK.

Using both (1) and (2) calculate x for a spherically symmetric metric of the form

dr?

ds®* = —A(r)dt* + B0

+ 7%(df* + sin® 0d¢?) ,
where the horizon is at r = ry at which A(ry) =0, B(ry) =0,A'(r4) #0,B'(ry) #0
and ’ denotes differentiation with respect to r.

Hence show that the “Wick rotated” Riemannian metric

d 2
(6 + sin2 0dg?) ,

ds®> = A(r)dr* + B0

will be free of a conical singularity at » = ro provided the coordinate 7 is taken to have
period 2?”

Indicate briefly the significance of this fact for the theory of Black Hole Thermody-
namics.
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The metric of a globally static asymptotically flat spacetime (with no horizon) may
be cast in the form

ds? = —e2UE") g2 + e_zU(xk)fyij(:Ck)(xk)dxidacj

with 4,5,k = 1,2,3 and U(xk) a bounded function of the spatial coordinates z* which
tends to zero at infinity. The vacuum Einstein equations imply that

G Ry = 20,U0,U ,

where (3)Rij is the Ricci tensor of the 3-metric ;;.

Show from the Bianchi identity for ®) R;; that U satisfies & V;V,;U = 0, where V;
is the Levi-Civita covariant derivative with respect to the metric ;;.

Show by multiplying 7Y V,;V,;U by U and integrating by parts, that if v;; is a
complete non-singular Riemannian metric and there is no inner boundary, then U = 0
everywhere, and hence that (3) R;; = 0.

Given that in 3 dimensions the Riemann tensor (3)Riqu and Ricci tensor (3)Rij are
related by
(3)Riqu = Yip (3)qu — Yig (3)Sjp — YVjip (3)Siq * Vg (3)Sip
with ) Siq =) R, — i%qu” () R,s, show that the only asymptotically flat, non-singular
globally static solution of the four-dimensional vacuum Einstein equations is Minkowski
spacetime.

How does this statement change when horizons are allowed?
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A Hermitian scalar quantum field ® has two expansions
o = <Z aip;i + d;[ﬁi)
i
_ ! il
= Z(aipi+aipi) )
i
where
A A Tl
anil) =[] =8

and p;,pj are appropriately normalized complex valued solutions of the covariant Klein-
Gordon equation and p; is the complex conjugate of p; and p/ is the complex conjugate of

p/; . Assuming
a; = Z(Oéijdj + 5z’j&}> ;
J
give conditions on «;; and (3;; ensuring that a; and o ZT satisfy the canonical commutation
relations, given that a; and dj satisfy the canonical commutation relations. If

ai =3 (Aya; + Bijd'}) ,

J
give expressions for A;; and B;; in terms of o;; and j3;;.

Explain how «;; and 3;; may be obtained from the relation between the solutions
p; and p} .

Given that the system is in the state |0) such that a;|0) = 0, calculate <0\d/jd/,~\o>
and give its interpretation.

Show that if a/;|0’) = 0, then |0) is some multiple of eF|0’>, where
A1 ot ot
F = 5 Z Z Mija/ia/j
i
and M;; should be given in terms of of A;; and B;;.

Illustrate your results by giving a brief sketch of Hawking’s derivation of black hole
radiation.
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