

### MATHEMATICAL TRIPOS Part III

Monday, 3 June, 2013 1:30 pm to 4:30 pm

## PAPER 5

### **REPRESENTATION THEORY**

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

What does it mean for a finite-dimensional  $\mathbb{C}$ -algebra A to be semisimple? Assume A is semisimple. State and prove the Artin–Wedderburn theorem for A [basic facts about such algebras may be assumed, provided they are clearly stated.]

Deduce the following results:

(a) Let B be any finite-dimensional  $\mathbb{C}$ -algebra and let S be a B-module. Show that the structural algebra homomorphism  $B \to \operatorname{End}_{\mathbb{C}}(S)$  defined by

$$a \to (s \mapsto as)$$

is surjective if and only if S is an irreducible B-module.

(b) Let  $C = \mathbb{C}G$ , the ordinary group algebra of a finite group. Prove that the number of isomorphism classes of irreducible C-modules is equal to the number of conjugacy classes in G. [You may assume the result that the centre Z(C) of C is free as a  $\mathbb{C}$ -module with rank equal to the number of conjugacy classes in G.]

#### $\mathbf{2}$

Let  $m \in \mathbb{N}$ . Given  $x = (x_1, \ldots, x_m) \in \mathbb{C}^m$  and  $\ell_1, \ldots, \ell_m \in \mathbb{Z}$ , define  $|x^{\ell_1}, \ldots, x^{\ell_m}|$ . Define also the *i*th power sum  $s_i(x)$  for  $i \in \mathbb{N}$ . Given a conjugacy class for  $S_n$  show that, in the usual notation,

$$s_1^{\alpha_1}\dots s_n^{\alpha_n}|x^{m-1},\dots,1| = \sum \omega_\lambda(\alpha)|x^{\ell_1},\dots,x^{\ell_m}|$$

where the sum is taken over all partitions  $\lambda$  of n into at most m parts, and  $\omega_{\lambda}$  are certain class functions to be explicitly defined.

Assume now that  $\omega_{\lambda} = \chi^{\lambda}$ , the character of the Specht module indexed by  $\lambda$ .

(a) Use the above character formula to compute  $\chi^{(2,1)}$  for the conjugacy class of transpositions in  $S_3$ . Check that this is the same as the value  $\chi_V(12)$ , where V is the standard representation  $V = \{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = 0\}$  with character  $\chi_V$ .

(b) Let  $\lambda$  be a partition of n. Let  $M^{\lambda}$  be the permutation module on cosets of Young subgroups of  $S_n$ . Let  $\sigma$  lie in the conjugacy class indexed by  $\mu$  and let  $m_q$  be the multiplicity with which the integer q occurs in  $\mu$ . By considering the polynomial

$$p_{\mu}(x_1, \dots, x_n) = \prod_{q=1}^n (x_1^q + \dots + x_n^q)^{m_q}$$

or otherwise, find an expression for the value of the character of  $M^{\lambda}$  on elements lying in the class indexed by  $\mu$ .

3

Let  $t_{\lambda}$  be a  $\lambda$ -tableau. Define the Young symmetrizer  $h(t_{\lambda})$ . If V is an m-dimensional vector space and  $n \in \mathbb{N}$ , write down the actions of  $S_n$  and  $\operatorname{GL}(V)$  on the tensor space  $V^{\otimes n}$  and show that they commute. Prove there is a decomposition

$$V^{\otimes n} = \bigoplus h(t_{\lambda}) V^{\otimes n} \,,$$

where the sum is over all partitions of n and standard  $t_{\lambda}$  [combinatorial properties of Young symmetrizers can be assumed, as can a certain decomposition of  $\mathbb{C}S_n$ , provided they are clearly stated.]

Show that the non-zero modules of the form  $h_{\lambda}V^{\otimes n}$  for  $\lambda$  running through the partitions of n are the non-isomorphic irreducible  $\mathbb{C}\mathrm{GL}(V)$ -modules [standard results about the Schur algebra may be quoted].

State conditions on  $\lambda$  for the modules  $h_{\lambda}V^{\otimes n}$  to be non-zero.

What does it mean to say that a finite-dimensional  $\mathbb{C}\mathrm{GL}(V)$ -module is rational? Write down the 1-dimensional rational representations of  $\mathbb{C}^{\times} = \mathrm{GL}_1(\mathbb{C})$ . Hence, or otherwise, prove that every 1-dimensional rational representation of  $\mathrm{GL}(V)$  is of the form  $\det^r : \mathrm{GL}(V) \to \mathrm{GL}_1$  where  $r \in \mathbb{Z}$  [if you wish, you may assume that the diagonalisable matrices are Zariski-dense in  $\mathrm{GL}_n$ .]

Finally show that every rational representation  $\rho$  of  $\mathbb{CSL}(V)$  is completely reducible and that  $\rho$  is the restriction of a rational representation  $\rho'$  of  $\mathbb{CGL}(V)$ , and  $\rho$  is irreducible if and only if  $\rho'$  is irreducible.

 $\mathbf{4}$ 

Let V be an m-dimensional vector space over  $\mathbb{C}$ . For the m-tuple  $\lambda = (\lambda_1, \ldots, \lambda_m) \in \mathbb{Z}^m$  with  $\lambda_1 \ge \cdots \ge \lambda_m$ , denote the character of  $D_{\lambda_1, \cdots, \lambda_m}(V)$  by  $\phi_{\lambda}$ . Show that such modules are a complete set of the non-isomorphic irreducible rational  $\mathbb{C}GL(V)$ -modules.

Show also that if  $\xi \in \text{End}(V)$  then  $\phi_{\lambda}(\xi)$  is a symmetric function of the eigenvalues of  $\xi$ .

Assuming Weyl's character formula, state and prove a formula for the degree,  $\deg \phi_{\lambda}$ , of  $\phi_{\lambda}$ . Deduce that if two rational  $\mathbb{C}\mathrm{GL}(V)$ -modules have the same character then they are isomorphic.

Finally show that each polynomial representation of  $\mathrm{GL}(V)$  occurs exactly once in in the symmetric power

$$\bigoplus_j \mathbf{S}^j(V \oplus \Lambda^2 V) \,.$$

[For the final part you may assume an identity of Schur:

$$\prod_{i=1}^{m} (1-x_i)^{-1} \cdot \prod_{1 \leq i < j \leq m} (1-x_i x_j)^{-1} = \sum_{\lambda} s_{\lambda}(x_1, \dots, x_m) \,,$$

where  $s_{\lambda}(x)$  is the Schur polynomial.]

 $\mathbf{5}$ 

Define the terms hook, hook length and hook graph.

Let  $\lambda = (\lambda_1 \ge \cdots \ge \lambda_m \ge 0)$ , and set  $\ell_i = \lambda_i + m - i$ , a  $\beta$ -set for  $\lambda$ . State the hook-length formula for the dimension of the Specht module. Show that the hook-length formula is equivalent to the formula

5

$$f_{\lambda} := n! \frac{\prod_{i < j} (\ell_i - \ell_j)}{\ell_1! \ell_2! \dots \ell_m!}.$$
(1)

Show that  $f_{\lambda} = \sum_{i=1}^{m} f_{(\lambda_1,\dots,\lambda_i-1,\dots,\lambda_m)}$ , where  $f_{(\lambda_1,\dots,\lambda_i-1,\dots,\lambda_m)}$  is defined to be zero if the sequence is not weakly decreasing, i.e. if  $\lambda_i = \lambda_{i+1}$ . Deduce an inductive proof of the hook-length formula by showing that if  $F(\ell_1,\dots,\ell_m)$  is the expression on the right-hand side of (1), then

$$F(\ell_1,\ldots,\ell_m) = \sum_{i=1}^m F(\ell_1,\ldots,\ell_i-1,\ldots,\ell_m).$$

Show that this is equivalent to the formula

$$n\Delta(\ell_1,\ldots,\ell_m) = \sum_{i=1}^m \ell_i \cdot \Delta(\ell_1,\ldots,\ell_i-1,\ldots,\ell_m),$$

where we write  $\Delta(\ell_1, \ldots, \ell_m)$  for  $\prod_{i < j} (\ell_i - \ell_j)$ . Deduce this formula from the identity

$$\sum_{i=1}^m x_i \Delta(x_1, \dots, x_i + t, \dots, x_m) = (x_1 + \dots + x_m + \binom{m}{2} t) \cdot \Delta(x_1, \dots, x_m).$$

Prove this identity.

Finally deduce the identity, that for any  $m \ge 2$ ,

$$\sum \frac{\prod_{i < j} (\ell_i - \ell_j)^2}{\ell_1 !^2 \ell_2 !^2 \cdots \ell_m !^2} = 1,$$

where the sum is over all *m*-tuples  $\ell_1, \ldots, \ell_m$  of non-negative integers whose sum is (m+1)m/2.

#### END OF PAPER

#### Part III, Paper 5