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(a) Let T be a tensor field of type (r, s) and X a vector field. Define the Lie derivative
LXT .

(b) Prove that the Lie derivative commutes with contraction and satisfies the Leibnitz rule

LX(S ⊗ T ) = (LXS)⊗ T + S ⊗ (LXT )

where S is a tensor field of type (p, q). [You may assume the existence of coordinates

(t, x1, x2, . . .) such that X = ∂/∂t]

(c) Prove that LXf = X(f) and LXY = [X,Y ] where f is a function and Y a vector field.

(d) Let ω be a covector field. Prove that, in any coordinate basis,

(LXω)µ = Xνωµ,ν + ωνX
ν
,µ

(e) Let T be tensor field of type (1, 1). Derive an expression for the components of LXT
in an arbitrary coordinate basis. Hence or otherwise prove that

LXLY T − LY LXT = L[X,Y ]T
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In the linearized approximation to General Relativity it is assumed that the spacetime
manifold is R

4 and there exist “almost inertial” coordinates xµ = (t, xi) such that the
metric takes the form gµν = ηµν +hµν where ηµν = diag(−1, 1, 1, 1) and |hµν | ≪ 1. Indices
are raised with ηµν and lowered with ηµν . Let h̄µν = hµν − (1/2)hηµν where h = hρρ.
Then, in the gauge ∂ν h̄µν = 0, the linearized Einstein equation is ∂ρ∂ρh̄µν = −16πTµν .

(a) Assume that matter is confined within a ball of radius d centred on the origin. Assume
that the matter moves non-relativistically. Show that, for r = |x| ≫ d

h̄ij(t,x) ≈
2

r
Ïij(t− r)

where

Iij(t) =

∫

d3xT00(t,x)x
ixj

(b) Consider a binary system consisting of two stars, each of mass M , in a Newtonian
circular orbit of radius R. Assuming that the quadrupole formula applies to this system,
calculate the average power emitted in gravitational radiation. You may approximate the
energy-momentum tensor of a star at rest at the origin as T00 = Mδ3(x), T0i = Tij = 0.
[Hint: Take the positions of the stars to be ±(R cos Ωt, R sinΩt, 0) where Ω is to be

determined.]

(c) Explain why the binary systems which emit the most gravitational radiation are tightly
bound and involve neutron stars or black holes.
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(a) Consider an infinitesimal variation of the spacetime metric gab → gab + δgab.

(i) Show that the corresponding change in the Levi-Civita connection is given by

δΓa
bc =

1

2
gad (∇cδgdb +∇bδgdc −∇dδgbc)

where ∇ is the Levi-Civita connection associated to gab.

(ii) Show that the change in the Ricci tensor is

δRab = ∇cδΓ
c
ab −∇bδΓ

c
ac

[You may use the formula for the components of the Riemann tensor in a coordinate basis:

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γτ

νσΓ
µ
τρ − Γτ

νρΓ
µ
τσ

]

(iii) Show that the change in the Ricci scalar is

δR = −Rabδgab +∇a∇bδgab −∇c∇c

(

gabδgab

)

(b) A theory of gravity has action

S =

∫

d4x
√−g f(R) + Smatter

where f is a smooth function.

(i) Show that varying gab gives the equation of motion Eab = (1/2)Tab where Tab is the
energy-momentum tensor of matter and

Eab = f ′Rab − f ′′∇a∇bR− f ′′′∇aR∇bR+

(

−1

2
f + f ′′∇c∇cR+ f ′′′∇cR∇cR

)

gab

where f ′ denotes f ′(R) etc. [You may use without proof δg = ggabδgab]

(ii) Explain why ∇aEab = 0 for any metric gab. [Hint. This does not require a long

calculation.]

(iii) Why does Lovelock’s theorem not apply to this theory?

(iv) Determine the necessary and sufficient condition on the function f that ensures that
any solution of the vacuum Einstein equation with cosmological constant Λ is also a
vacuum solution of this theory.
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A spacetime has metric

ds2 =
1

z2
(

−f(z)2dt2 + dx2 + dy2 + f(z)−2dz2
)

where f(z) =
√
1− αz3 and α is a constant. An orthonormal basis is defined by

e0 =
f

z
dt e1 =

1

z
dx e2 =

1

z
dy e3 =

1

zf
dz

(a) Determine the connection 1-forms satisfying deµ = −ωµ
ν∧eν and the curvature 2-forms

defined by Θµ
ν = dωµ

ν + ωµ
ρ ∧ ωρ

ν

(b) Show that this metric satisfies the vacuum Einstein equation with a cosmological
constant Λ whose value you should determine.

END OF PAPER

Part III, Paper 49


