

### MATHEMATICAL TRIPOS Part III

Thursday, 6 June, 2013 9:00 am 12:00 pm

### PAPER 46

### STRING THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# UNIVERSITY OF

1

Write down the Nambu-Goto action for a closed string of tension T in a Ddimensional Minkowski spacetime with coordinates  $X^m$  (m = 0, 1, ..., D - 1). Explain why it is equivalent to the Polyakov action

$$S = -\frac{T}{2} \int d^2 \sigma \sqrt{-\det \gamma} \, \gamma^{\mu\nu} \partial_{\mu} X^m \partial_{\nu} X^n \eta_{mn} \,,$$

where  $\gamma_{\mu\nu}$  is an independent worldsheet metric in local coordinates  $\sigma^{\mu}$  ( $\mu = 0, 1$ ). Use this equivalence to find the Nambu-Goto equation of motion for the worldsheet fields  $X^m(t, \sigma)$ .

Write down the generalization of the Polyakov action for a closed string in an arbitrary spacetime metric, and coupled to a 2-form potential b and scalar dilaton field  $\Phi$ . Use your result to explain, briefly, how the vacuum value of the dilaton field appears in an expansion of the path-integral representation of the vacuum to vacuum amplitude in powers of the "string coupling constant"  $g_s$ .

The worldsheet of a closed Nambu-Goto string of tension T is embedded into a 5-dimensional Minkowski space such that  $X^0 = t$  and

$$X^{1} = \frac{1}{2}\cos(\sigma - t), \quad X^{2} = \frac{1}{2}\sin(\sigma - t),$$
  

$$X^{3} = \frac{1}{2}\cos(\sigma + t), \quad X^{4} = \frac{1}{2}\sin(\sigma + t).$$
(1)

What is the induced metric on the worldsheet? Use your result to verify that the Nambu-Goto equations are satisfied, and that the proper length L of the string is constant. By considering a rotating cartesian coordinate system for the Euclidean 4-space, show that the string is both circular and planar. What is the energy of the string? Why is it larger than TL?

The action for a closed Nambu-Goto string in Hamiltonian form is

$$S = \int dt \oint d\sigma \left\{ \dot{X}^m P_m - \frac{1}{2}e \left[ P^2 + (TX')^2 \right] - uX'^m P_m \right\} \,.$$

What is the significance of the constraints imposed by the Lagrange multipliers e and u? What are the equations of motion for (X, P). Now consider an open Nambu-Goto string; what is the principle that determines the allowed boundary conditions at the ends of the string? Use this principle to show that it is consistent to impose free-end boundary conditions. Why must the endpoints of such a string move at the speed of light? Show also that it is consistent to impose boundary conditions that restrict the ends to move within a p-dimensional "plane". Explain, briefly, how the lowest energy states of a string with such boundary conditions are consistent with an interpretation of the p-plane as a planar p-brane.

## CAMBRIDGE

2

3

Using the example of a mechanical system with phase-space action

$$S = \int dt \left\{ \dot{q}^I p_I - \lambda^i \varphi_i(q, p) \right\}, \qquad (I = 1, \dots, N; \ i = 1, \dots, n \leqslant N) \qquad (\star)$$

explain what is meant by the statement that the constraints  $\varphi_i = 0$  imposed by the Lagrange multipliers  $\lambda^i$  are "first-class". Assuming that they *are* first-class, write down the gauge transformation of a function F(q, p) on phase space generated by  $\sum_i \xi^i \varphi_i$  for parameters  $\xi^i$ ; what is the dimension of the physical phase space of this system?

The Fourier-space action for the open Nambu-Goto string in D spacetime dimensions with free ends is

$$S = \int dt \left\{ \dot{x}^m p_m + \sum_{k=1}^{\infty} \frac{i}{k} \alpha_{-k} \cdot \dot{\alpha}_k - \sum_{n \in \mathbb{Z}} \lambda_{-n} L_n \right\}, \quad L_n = \frac{1}{2} \sum_{k \in \mathbb{Z}} \alpha_k \cdot \alpha_{n-k}.$$

Explain briefly the origin and meaning of the canonical variables appearing in this action, and find their Poisson brackets by putting the action into the form (\*). Compute the Poisson bracket algebra of the constraint functions  $L_n$  and hence show that the (classical) constraints are "first class". Find the gauge transformations of  $\alpha_k$ , with parameters  $\xi_n$ , generated by  $\sum_n \xi_{-n} L_n$ .

By defining the light-cone components  $(\alpha_k^{\pm}, \alpha_k)$  of the *D*-vector  $\alpha_k$ , use your result to show that the gauge invariance of the above string action may be partially fixed (assuming  $\alpha_0^+ \neq 0$ ) by imposing the light-cone gauge conditions  $\alpha_k^+ = 0$  for  $k \neq 0$ , and that the constraints may then be solved for  $\alpha_k^-$  for  $k \neq 0$ . Write down the action in this gauge, and use it to find the canonical commutation relations of the operators  $\alpha_k$ of the quantum string in light-cone gauge. Show that physical states describe particles with squared masses given by the eigenvalues of an operator  $\mathcal{M}^2 = (N - a)/\alpha'$ , where you should define the level-number operator N and explain the meaning of the constants  $\alpha'$  and a. Explain briefly why the first excited states must be massless and how this fact fixes a.

In the light-cone gauge quantization of the *closed* Nambu-Goto string in a  $Mink_{D-1} \times S^1$  spacetime, the mass-squared operator is

$$\mathcal{M}^2 = \frac{2}{\alpha'} \left( N + \tilde{N} - 2 \right) + \left( \frac{n}{R} \right)^2 + \left( \frac{Rw}{\alpha'} \right)^2 \,,$$

where R is the radius of the circle. Explain briefly the meaning of the operators  $(N, \tilde{N})$ , and the integers (n, w). Using the level-matching condition  $N - \tilde{N} = wn$ , find all massless states when  $R = \sqrt{\alpha'}$ .

## CAMBRIDGE

3

A relativistic point particle of mass  $\mu$  in *D*-dimensional Minkowski space has the action

$$S = \int dt \left\{ \dot{x}^m p_m - \frac{1}{2} e\left( p^2 + \mu^2 \right) \right\} \qquad (m = 0, 1, \dots, D - 1).$$

Explain, with brief justification in the context of path-integrals, why the choice of gauge  $e = \bar{e}$  (for constant  $\bar{e}$ ) requires an addition to the classical gauge-fixed action of a term involving anticommuting Faddeev-Popov (anti)ghost variables (b, c). Write down the full gauge-fixed action S[x, p; b, c] for  $\bar{e} = 1$ , and show that it is invariant under a BRST symmetry with anticommuting parameter  $\Lambda$ . What is the BRST charge,  $Q_{BRST}$ , and how does it generate the BRST transformations? Show that the BRST operator of the quantum theory satisfies  $Q_{BRST}^2 = 0$ . Why is the physical state condition  $Q_{BRST}|\text{phys}\rangle = 0$  equivalent to the Klein-Gordon equation?

In conformal gauge and with the corresponding FP ghost term, the Fourier-space action for the open Nambu-Goto string, in D spacetime dimensions, has commuting canonical variables  $\alpha_k^m$  and anticommuting canonical variables  $(b_k, c_k)$ . Write down the non-zero Poisson brackets of these variables, and the anticomutation relations of the corresponding operators of the quantum theory. In terms of these operators, the BRST operator is

$$Q_{BRST} = \frac{1}{2} \sum_{p \in \mathbb{Z}} \sum_{q \in \mathbb{Z}} c_{-p} \left[ \alpha_q \cdot \alpha_{p-q} - (p-q)c_{-q}b_{p+q} \right].$$

Let  $L_m = \{b_m, Q_{BRST}\}$ . Show that  $L_m$ , so defined, can be written as the sum of expressions  $L_m^{(\alpha)}$  and  $L_m^{(gh)}$  (which you should find) that are quadratic in, respectively,  $\alpha_k$  and the (anti)ghost variables  $(b_k, c_k)$ . Why is  $L_0$  ambiguous? In what follows you may assume that this ambiguity has been eliminated by requiring the oscillator vacuum  $|0\rangle$  to be annihilated by both  $Q_{BRST}$  and  $b_0$ .

By considering  $[\{b_m, Q_{BRST}\}, L_n]$  show that

$$Q_{BRST}^2 = 0 \quad \Rightarrow \quad [L_m, L_n] = (m-n)L_{m+n}$$

Now show (assuming that  $Q_{BRST}^2 = 0$ ) that  $||L_{-1}|0\rangle||^2 = \alpha_0^2 - 2$ . By relating the left hand side to the commutator  $[L_1, L_{-1}]$ , deduce that

$$\langle 0|L_0|0\rangle = \frac{1}{2}\alpha_0^2 - 1.$$

Now compute  $||L_{-2}|0\rangle||^2$  and use your result to deduce that D = 26. Finally, use the fact that  $b_0$  and  $Q_{BRST}$  annihilate the oscillator vacuum to determine  $\alpha_0^2$  in the string ground state.

# UNIVERSITY OF

4

The massless spinning particle action in a D-dimensional Minkowski spacetime has the action

$$S = \int dt \left\{ \dot{x}^m p_m + \frac{i}{2} \zeta^m \dot{\zeta}^n \eta_{mn} - \frac{1}{2} e \, p^2 - i \chi p \cdot \zeta \right\} \,,$$

where the canonical variables  $\zeta^m(t)$  and the Lagrange multiplier  $\chi$  are anticommuting. What are the equations of motion? Show how the manifest Lorentz invariance of this action leads to the conclusion that there is an antisymmetric-tensor Noether charge  $J^{mn}$ of the form

$$J^{mn} = x^m p^n - x^n p^m + S^{mn}$$

where you should determine the spin part  $(S^{mn})$  and verify that the equations of motion imply that  $\dot{J}^{mn} = 0$ . Use this model to explain how anticommuting variables can be used for a "classical" description of spin. In particular, write down the Poisson bracket relations for the anticommuting *D*-vector  $\zeta$  and explain how Dirac quantization of this model yields a spinor wavefunction satisfying the massless Dirac equation.

Write down the Fourier space action for the open Neveu-Schwarz (NS) string (with free ends and in D spacetime dimensions) in terms of the centre-of-mass modes  $(x^m, p_m)$ and the D-vector Bose and Fermi oscillator variables,  $\alpha_k$  and  $b_r$  respectively, where  $k \in \mathbb{Z}$ and  $r \in \mathbb{Z} + 1/2$ . Your action should contain Lagrange multiplier terms imposing the constraints  $L_n = 0$  and  $G_r = 0$ , where

$$L_n = \frac{1}{2} \sum_{k \in \mathbb{Z}} \alpha_k \cdot \alpha_{n-k} + \frac{1}{2} \sum_{r \in \mathbb{Z} + \frac{1}{2}} r \, b_{n-r} \cdot b_r \,, \qquad G_r = \sum_{k \in \mathbb{Z}} \alpha_{-k} \cdot b_{r+k} \,.$$

How does the labelling of Fermi oscillators arise from boundary conditions for the open NS string? How is  $\alpha_0$  related to the centre of mass *D*-momentum? Write down the non-zero (anti)commutation relations obeyed by the oscillator variables in the "old-covariant" approach to quantization and state the defining properties of the oscillator vacuum  $|0\rangle$ . Assuming that  $L_0$  is defined such that  $(2L_0 - \alpha_0^2)|0\rangle = 0$ , a state is said to be "physical" if, for some constant a,

$$(L_0 - a) |\text{phys}\rangle = 0, \quad L_n |\text{phys}\rangle = 0, \quad n > 0; \quad G_r |\text{phys}\rangle = 0, \quad r > 0.$$

Given that  $|0\rangle$  is "physical", what kind of particle in the string spectrum does it describe? What is the condition for the state  $A(p) \cdot b_{-\frac{1}{2}} |0\rangle$  of *D*-momentum *p* to be physical? Show that all physical states of this form have non-negative norm if and only if  $a \leq 1/2$ . What is special about the limiting a = 1/2 case?

### END OF PAPER

### Part III, Paper 46