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Write down the Nambu-Goto action for a closed string of tension T in a D-
dimensional Minkowski spacetime with coordinates Xm (m = 0, 1, . . . ,D − 1). Explain
why it is equivalent to the Polyakov action

S = −T

2

∫

d2σ
√

− det γ γµν∂µX
m∂νX

nηmn ,

where γµν is an independent worldsheet metric in local coordinates σµ (µ = 0, 1). Use this
equivalence to find the Nambu-Goto equation of motion for the worldsheet fields Xm(t, σ).

Write down the generalization of the Polyakov action for a closed string in an
arbitrary spacetime metric, and coupled to a 2-form potential b and scalar dilaton field Φ.
Use your result to explain, briefly, how the vacuum value of the dilaton field appears in
an expansion of the path-integral representation of the vacuum to vacuum amplitude in
powers of the “string coupling constant” gs.

The worldsheet of a closed Nambu-Goto string of tension T is embedded into a
5-dimensional Minkowski space such that X0 = t and

X1 =
1

2
cos(σ − t) , X2 =

1

2
sin(σ − t) ,

X3 =
1

2
cos(σ + t) , X4 =

1

2
sin(σ + t) . (1)

What is the induced metric on the worldsheet? Use your result to verify that the Nambu-
Goto equations are satisfied, and that the proper length L of the string is constant. By
considering a rotating cartesian coordinate system for the Euclidean 4-space, show that
the string is both circular and planar. What is the energy of the string? Why is it larger
than TL?

The action for a closed Nambu-Goto string in Hamiltonian form is

S =

∫

dt

∮

dσ

{

ẊmPm − 1

2
e
[

P 2 + (TX ′)2
]

− uX ′mPm

}

.

What is the significance of the constraints imposed by the Lagrange multipliers e and
u? What are the equations of motion for (X,P ). Now consider an open Nambu-Goto
string; what is the principle that determines the allowed boundary conditions at the ends
of the string? Use this principle to show that it is consistent to impose free-end boundary
conditions. Why must the endpoints of such a string move at the speed of light? Show
also that it is consistent to impose boundary conditions that restrict the ends to move
within a p-dimensional “plane”. Explain, briefly, how the lowest energy states of a string
with such boundary conditions are consistent with an interpretation of the p-plane as a
planar p-brane.
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Using the example of a mechanical system with phase-space action

S =

∫

dt
{

q̇IpI − λiϕi(q, p)
}

, (I = 1, . . . , N ; i = 1, . . . , n 6 N) (⋆)

explain what is meant by the statement that the constraints ϕi = 0 imposed by the
Lagrange multipliers λi are “first-class”. Assuming that they are first-class, write down
the gauge transformation of a function F (q, p) on phase space generated by

∑

i ξ
iϕi for

parameters ξi; what is the dimension of the physical phase space of this system?

The Fourier-space action for the open Nambu-Goto string in D spacetime dimen-
sions with free ends is

S =

∫

dt







ẋmpm +

∞
∑

k=1

i

k
α−k · α̇k −

∑

n∈Z

λ−nLn







, Ln =
1

2

∑

k∈Z

αk · αn−k .

Explain briefly the origin and meaning of the canonical variables appearing in this action,
and find their Poisson brackets by putting the action into the form (⋆). Compute the
Poisson bracket algebra of the constraint functions Ln and hence show that the (classical)
constraints are “first class”. Find the gauge transformations of αk, with parameters ξn,
generated by

∑

n ξ−nLn.

By defining the light-cone components (α±

k ,αk) of the D-vector αk, use your result
to show that the gauge invariance of the above string action may be partially fixed
(assuming α+

0 6= 0) by imposing the light-cone gauge conditions α+
k = 0 for k 6= 0,

and that the constraints may then be solved for α−

k for k 6= 0. Write down the action
in this gauge, and use it to find the canonical commutation relations of the operators αk

of the quantum string in light-cone gauge. Show that physical states describe particles
with squared masses given by the eigenvalues of an operator M2 = (N − a)/α′, where
you should define the level-number operator N and explain the meaning of the constants
α′ and a. Explain briefly why the first excited states must be massless and how this fact
fixes a.

In the light-cone gauge quantization of the closed Nambu-Goto string in a MinkD−1×
S1 spacetime, the mass-squared operator is

M2 =
2

α′

(

N + Ñ − 2
)

+
( n

R

)2
+

(

Rw

α′

)2

,

where R is the radius of the circle. Explain briefly the meaning of the operators (N, Ñ ),
and the integers (n,w). Using the level-matching condition N − Ñ = wn, find all massless
states when R =

√
α′.
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A relativistic point particle of mass µ in D-dimensional Minkowski space has the
action

S =

∫

dt

{

ẋmpm − 1

2
e
(

p2 + µ2
)

}

(m = 0, 1, . . . ,D − 1).

Explain, with brief justification in the context of path-integrals, why the choice of gauge
e = ē (for constant ē) requires an addition to the classical gauge-fixed action of a term
involving anticommuting Faddeev-Popov (anti)ghost variables (b, c). Write down the full
gauge-fixed action S[x, p; b, c] for ē = 1, and show that it is invariant under a BRST
symmetry with anticommuting parameter Λ. What is the BRST charge, QBRST , and how
does it generate the BRST transformations? Show that the BRST operator of the quantum
theory satisfies Q2

BRST = 0. Why is the physical state condition QBRST |phys〉 = 0
equivalent to the Klein-Gordon equation?

In conformal gauge and with the corresponding FP ghost term, the Fourier-space
action for the open Nambu-Goto string, in D spacetime dimensions, has commuting
canonical variables αm

k and anticommuting canonical variables (bk, ck). Write down the
non-zero Poisson brackets of these variables, and the anticomutation relations of the
corresponding operators of the quantum theory. In terms of these operators, the BRST
operator is

QBRST =
1

2

∑

p∈Z

∑

q∈Z

c−p [αq · αp−q − (p− q)c−qbp+q] .

Let Lm = {bm, QBRST }. Show that Lm, so defined, can be written as the sum of

expressions L
(α)
m and L

(gh)
m (which you should find) that are quadratic in, respectively,

αk and the (anti)ghost variables (bk, ck). Why is L0 ambiguous? In what follows you may
assume that this ambiguity has been eliminated by requiring the oscillator vacuum |0〉 to
be annihilated by both QBRST and b0.

By considering [{bm, QBRST } , Ln] show that

Q2
BRST = 0 ⇒ [Lm, Ln] = (m− n)Lm+n .

Now show (assuming that Q2
BRST = 0) that ||L−1|0〉||2 = α2

0−2. By relating the left hand
side to the commutator [L1, L−1], deduce that

〈0|L0|0〉 =
1

2
α2
0 − 1 .

Now compute ||L−2|0〉||2 and use your result to deduce that D = 26. Finally, use the fact
that b0 and QBRST annihilate the oscillator vacuum to determine α2

0 in the string ground
state.
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The massless spinning particle action in a D-dimensional Minkowski spacetime has
the action

S =

∫

dt

{

ẋmpm +
i

2
ζmζ̇nηmn − 1

2
e p2 − iχp · ζ

}

,

where the canonical variables ζm(t) and the Lagrange multiplier χ are anticommuting.
What are the equations of motion? Show how the manifest Lorentz invariance of this
action leads to the conclusion that there is an antisymmetric-tensor Noether charge Jmn

of the form
Jmn = xmpn − xnpm + Smn ,

where you should determine the spin part (Smn) and verify that the equations of motion
imply that J̇mn = 0. Use this model to explain how anticommuting variables can be used
for a “classical” description of spin. In particular, write down the Poisson bracket relations
for the anticommuting D-vector ζ and explain how Dirac quantization of this model yields
a spinor wavefunction satisfying the massless Dirac equation.

Write down the Fourier space action for the open Neveu-Schwarz (NS) string (with
free ends and in D spacetime dimensions) in terms of the centre-of-mass modes (xm, pm)
and the D-vector Bose and Fermi oscillator variables, αk and br respectively, where k ∈ Z

and r ∈ Z + 1/2. Your action should contain Lagrange multiplier terms imposing the
constraints Ln = 0 and Gr = 0, where

Ln =
1

2

∑

k∈Z

αk · αn−k +
1

2

∑

r∈Z+ 1

2

r bn−r · br , Gr =
∑

k∈Z

α−k · br+k .

How does the labelling of Fermi oscillators arise from boundary conditions for the open
NS string? How is α0 related to the centre of mass D-momentum? Write down the non-
zero (anti)commutation relations obeyed by the oscillator variables in the “old-covariant”
approach to quantization and state the defining properties of the oscillator vacuum |0〉.
Assuming that L0 is defined such that (2L0 − α2

0)|0〉 = 0, a state is said to be “physical”
if, for some constant a,

(L0 − a) |phys〉 = 0 , Ln|phys〉 = 0 , n > 0 ; Gr|phys〉 = 0 , r > 0 .

Given that |0〉 is “physical”, what kind of particle in the string spectrum does it describe?
What is the condition for the state A(p) · b

−
1

2

|0〉 of D-momentum p to be physical? Show

that all physical states of this form have non-negative norm if and only if a 6 1/2. What
is special about the limiting a = 1/2 case?
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