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A matrix A ∈ C
m×N is said to satisfy the null space property relative to a set

S ⊂ {1, . . . , N} if
‖vS‖1 < ‖vSc‖1, for all v ∈ N (A) \ {0}.

It is said to satisfy the null space property of order s if it satisfies the null space property
relative to any set S ⊂ {1, . . . , N} with |S| 6 s. (N (A) denotes the null space of A,
Sc = {1, . . . , N} \ S and vS denotes the vector equal to v on S and zero on Sc).

(a) Given a matrix A ∈ C
m×N , show that every s-sparse vector x ∈ C

N (meaning that
x has at most s non-zero coefficients) is the unique solution to

min ‖z‖1 subject to Az = Ax

if and only if A satisfies the null space property of order s.

(b) Show that every s-sparse vector x ∈ C
N is the unique solution to

min ‖z‖0 subject to Az = Ax

if A satisfies the null space property of order s (here the l0 ”norm” denotes the
number of non-zero elements in the vector).

In the next part you may use the following fact without proof: Given a matrix
A ∈ C

m×N and 0 < r < 1, every s-sparse vector x ∈ C
N is the unique solution to

min ‖z‖r subject to Az = Ax (1)

if and only if, for any set S ⊂ {1, . . . , N} with |S| 6 s,

‖vS‖r < ‖vSc‖r, ∀v ∈ N (A) \ {0}.

(c) Let 0 < p < q < 1. Show that if every s-sparse vector x ∈ C
N is the unique solution

to (1) with r = q then every s-sparse vector x ∈ C
N is also the unique solution to

(1) with r = p.
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The s-th restricted isometry constant δs = δs(A) of a matrix A ∈ C
m×N is the

smallest δ > 0 such that

(1− δ)‖x‖22 6 ‖Ax‖22 6 (1 + δ)‖x‖22

for all s-sparse vectors x ∈ C
n.

(a) Let A ∈ C
m×N . Show that

δs = max
S⊂{1,...,N},|S|6s

‖A∗
SAS − Id‖2→2,

where AS denotes the submatrix of A obtained by selecting the columns indexed by
S.

Let A ∈ C
m×N be a matrix with l2-normalised columns a1, . . . , aN , i.e. ‖ai‖2 = 1

for all 1 6 i 6 N . The coherence µ = µ(A) of the matrix A is defined as

µ = max
16i 6=j6N

|〈ai, aj〉|.

Also, the l1-coherence function µ1 of the matrix A is defined, for 1 6 s 6 N − 1 by

µ1(s) = max
i∈{1,...,N}

max







∑

j∈S

|〈ai, aj〉|, S ⊂ {1, . . . , N}, |S| = s, i /∈ S







.

In the following problems A ∈ C
m×N with l2-normalised columns.

(b) Let 1 6 s 6 N . Show that for all s-sparse vectors x ∈ C
N

(1− µ1(s− 1))‖x‖2
2
6 ‖Ax‖2

2
6 (1 + µ1(s− 1))‖x‖2

2
.

(You may use the fact that if B ∈ C
n×n and λ is an eigenvalue, then there exists

an index j ∈ {1, . . . , n} such that

|λ−Bjj| 6
∑

l∈{1,...,n}\{j}

|Bjl|,

without proving this result.)

(c) Show that

δ1 = 0, δ2 = µ, δs 6 µ1(s− 1) 6 (s− 1)µ, s > 2.
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Let A ∈ R
m×N with columns a1, . . . , aN and x ∈ R

N such that supp(x) = S ⊂
{1, . . . , N}. Consider the three conditions:

(i) |
∑

j∈S sgn(xj)vj| < ‖vSc‖1 for all v ∈ N (A) \ {0},

(ii) AS is injective and there exists a vector h ∈ R
m such that

(A∗h)j = sgn(xj), j ∈ S, |(A∗h)l| < 1, l ∈ Sc,

(iii) AS is injective and

|〈(A∗
SAS)

−1A∗
Sal, sgn(xS)〉| < 1, for all l ∈ Sc,

(in this case xS is understood to be in R
s , where s = |S|).

This problem is about relating the above conditions to the optimisation problem

min ‖z‖l1 subject to Az = Ax. (1)

(a) Show that x is the unique minimiser of (1) when condition (i) holds.

(b) Show that if x is the unique minimiser of (1) then (i) holds.

(c) Show that x is the unique minimiser of (1) when condition (ii) holds.

(d) Show that x is the unique minimiser of (1) when condition (iii) holds.

Part III, Paper 36



5

4

Let V,W be closed subspaces of the Hilbert space H, and let PV denote the
projection onto V. The angle θV ,W ∈ [0, π/2] is defined by

cos (θV ,W) := inf
v∈V ,‖v‖=1

‖PWv‖.

In the problems below you may use the following without a proof: If W ⊕V = H, then

‖PVW‖ = ‖I − PVW‖ = sec(θV ,W⊥),

where PVW denotes the oblique projection of H on V along W.

(a) Let V,W be closed subspaces of H. Show that if cos
(

θW ,V⊥

)

and cos
(

θV⊥,W

)

are
both positive then W ⊕V = H.

(b) Let U and V be closed subspaces of H such that cos
(

θU ,V⊥

)

> 0 . Suppose also that

dim(U) = dim(V⊥) = n <∞. Show that U ⊕ V = H.

(c) Let {φj}j∈N and {ψj}∈N be orthonormal systems ofH and let Tn = span{φ1, . . . , φn}
and Sn = span{ψ1, . . . , ψn}. Suppose that

cos(θTn,Sn
) > 0.

Show that for any f ∈ H, there exists a unique f̃n ∈ Tn satisfying

〈f̃n, ψj〉 = 〈f, ψj〉, j ∈ {1, . . . , n}.

Furthermore, show that the following bounds hold:

‖f̃n‖ 6 sec(θTn,Sn
)‖f‖, ‖f − PTnf‖ 6 ‖f − f̃n‖ 6 sec(θTn,Sn

)‖f − PTnf‖.
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