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1

Assume y1, .., yn are independent observations of lengths of caterpillar, assumed
drawn from a density Y |θ ∼ Unif(0, θ), Y < θ, where θ is the maximum size this breed of
caterpillar can grow.

(a) Show that the likelihood function for θ is ∝ θ−n, θ > M , where M = max(y1, .., yn).

(b) Suppose we assume θ follows a Pareto distribution, θ ∼ Pareto(α, β), α, β > 0.
Show that the Pareto is conjugate to the Uniform distribution, and the posterior
distribution for θ is Pareto(α + n,max(β,M)). [A Pareto(α, β) distribution has
density p(θ) = αβαθ−(α+1); θ > β, 0 otherwise.]

(c) Derive a form for the predictive density p(y1, .., yn|α, β).

(d) Suppose we now have a series of I different breeds, each with ni observations denoted
yi = (yi1, .., yini

), where Yij|θ ∼ Unif(0, θi), j = 1, ..., ni. Explain the meaning of an
assumption of exchangeability of the θi’s, and when it might be reasonable.

(e) Each θi is assumed to have a common prior Pareto distribution with known β but
unknown α. Write down an expression for p(y1, ..,yI |α, β).

(f) Define the Type II maximum likelihood estimate α̂ for α, and show that it obeys the
equation

I

α̂
−

∑

i

1

ni + α̂
=

∑

i

log max(1,Mi/β),

where Mi = max(yi1, .., yini
). Show that if n1 = n2 = .. = nI , then α̂ is a solution

to a quadratic equation.

(g) If β were greater than all the observed data-points, what would α̂ be? Would this be
sensible?

(h) Suppose someone claimed that the sampling distributions for the Yij were not uniform,
but exponential. Briefly outline the steps to compare these models using DIC.
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(a) Suppose a random variable Y is assumed to have probability density p(y|θ) for a
scalar parameter θ. Define a Jeffreys prior pJ(θ) for θ.

(b) In a scale model p(y|σ) = 1
σf

( y
σ

)

, show that E[g(Y/σ)] is independent of σ for any
function g.

(c) Hence show that the Jeffreys prior in a scale model p(y|σ) = 1
σf

( y
σ

)

is pJ(σ) ∝
1/σ, σ > 0.

(d) Show that this prior is scale invariant, in that cσ has the same (improper) distribution
as σ for all c > 0

(e) Benford’s Law states that, in many collections of numbers in the real world, the

leading digit i, for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, occurs in proportion given by log(1+1/i)
log 10 .

Show that if X has a density proportional to 1/x on the range (1,10), then X obeys
Benford’s Law exactly.

(f) Show that if X has a density proportional to 1/x on the range (10a, 10b), for any
b > a, then X obeys Benford’s Law exactly.

(g) Given a null hypothesis that fully specifies a probability density p0(x), and and a set
of observations x = x1, . . . , xn that may or may not obey that distribution, what is
meant by a checking (or discrepancy) function T (X)?

(h) Suppose you had a set (y1, . . . , y9) comprising the counts of the leading digits in
a collection of numbers. Suggest one or more appropriate checking functions for
Benford’s Law, and describe roughly how you would implement them using R or
WinBUGS.

(i) The following table from Eurostat shows the leading digits in 140 values in the National
Accounts of Greece in 2009 [real data].

Leading digit Benford prediction Greece 2009 prop

1 0.30 41 0.29
2 0.18 37 0.26
3 0.12 28 0.20
4 0.10 14 0.10
5 0.08 3 0.02
6 0.07 6 0.04
7 0.06 7 0.05
8 0.05 4 0.03
9 0.05 0 0.00

140

If there is a distribution over the leading digit of sums of money, why might this
distribution be scale-invariant?

(j) Without doing any calculations, are you suspicious about these figures?
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Suppose there are N individuals, grouped into I groups, with ni in the ith group
all having covariate vector xi = (xi1, .., xip). Each individual is then classified into one of
K disjoint categories, and let Yik, i = 1, ..., I; k = 1, ..,K be the number of individuals in
group i that are classified into category k.

(a) We assumeYi = (Yi1, .., YiK) is multinomial with parameters pi = (p1i, .., piK),
∑

k pik =
1 and ni =

∑

k Yik. Give the form of the density for Yi.

(b) We assume a regression model for each category k > 1 versus category 1 given by

log
pik
pi1

= β′

kxi,

where βk = (βk1, .., βkp). Assuming β1 = 0, show the overall likelihood for β based
on observations yi, i = 1, . . . , I is proportional to

I
∏

i=1

e
∑K

k=1
yik β′

kxi

[

∑K
k=1 e

β′

kxi)
]ni

(c) Suppose we assume the data in fact were generated by

Yik ∼ Poisson(µik)

µik = µi1e
β′

kxi

Show that if we assume that the µi1’s have independent Gamma(a, b) prior distri-
butions, the marginal likelihood ∝ p(y1, ..,yI |β1, ..,βK) has the form

∝

I
∏

i=1

e
∑K

j=1
yij β

′

jxi

[

∑K
j=1 e

β′

jxi + b
]ni+a

(d) The table shows the feeding choices of 219 alligators, where the response measure
for each alligator is one of K = 5 categories: fish, invertebrate, reptile, bird, other.
Possible explanatory factors are the length of alligator (6 2.3 metres and > 2.3
metres), and the lake (Hancock, Oklawaha, Trafford, George).

Primary Food Choice
Lake Size Fish Invertebrate Reptile Bird Other

Hancock 6 2.3 23 4 2 2 8
> 2.3 7 0 1 3 5

Oklawaha 6 2.3 5 11 1 0 3
> 2.3 13 8 6 1 0

Trafford 6 2.3 5 11 2 1 5
> 2.3 8 7 6 3 5

George 6 2.3 16 19 1 2 3
> 2.3 17 1 0 1 3

There are I = 8 groups, and the covariate xi = (xi1, .., xi5) is coded as
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• xi1 = 1 if alligators in group i are from Lake Hancock, 0 otherwise

• xi2 = 1 if alligators in group i are from Lake Oklawaha, 0 otherwise

• xi3 = 1 if alligators in group i are from Lake Trafford, 0 otherwise

• xi4 = 1 if alligators in group i are from Lake George, 0 otherwise

• xi5 = 1 if alligators in group i are are > 2.3 metres, 0 if < 2.3 metres

β1 is set to 0, and βk, k > 1, given locally uniform prior distributions.

BUGS code includes the section

for (i in 1 : I) { # loop around groups

lambda[i] ~ dnorm(0, 0.00001) # vague priors

for (k in 1 : K) { # loop around foods

y[i, k] ~ dpois(mu[i, k])

log(mu[i, k]) <- lambda[i] + inprod(beta[k,], x[i,])

}

}

where inprod(beta[k,], x[i,]) represents
∑

j βkjxij = β′

kxi.

Explain why this model should lead to a posterior distribution for the β’s propor-
tional to the Multinomial likelihood of part (a). Why might this be a more efficient
(from a computational perspective) way of representing the model?

(e) Parts of the output of a BUGS run was as follows.

node mean sd

beta[2,1] -1.852 0.542

beta[2,2] 0.880 0.411

beta[2,3] 1.077 0.430

beta[2,4] -0.093 0.303

beta[2,5] -1.524 0.397

Dbar Dhat pD DIC

y 164.6 137.7 26.8 191.5

Interpret the estimates for β21 and β25. How does the estimated effective number of
parameters in the DIC output compare with the actual number of free parameters
estimated?

[A Poisson(µ) distribution has density p(y|µ) = µy

y! e
µ; y = 0, 1, ....

A Gamma(a, b) distribution has density p(µ|a, b) = ba

Γ(a)µ
a−1e−bµ;µ > 0, 0 other-

wise.]
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(a) When expressing a distribution P to predict a random quantity X, define a scoring

rule S(P,X). If we really believe a distribution Q, find the expected score and give
the conditions for the scoring rule to be proper and strictly proper.

(b) Suppose a weather forecaster is providing probabilities pt of it raining on day t, where
the outcome Xt = 1 if it rains, 0 otherwise. It is proposed to score them by the
probability they give to the correct outcome, so that they score pt if Xt = 1, and
score 1− pt if Xt = 0. Show this is not a proper scoring rule, and find the expected
score if the forecaster maximally exaggerates their confidence.

(c) When forecasting mean daily temperature Y , a logarithmic scoring rule is used, so
that if a forecaster provides a predictive density pỸ (ỹ), and y is then observed, they
are rewarded log pỸ (y). Show that this is a strictly proper scoring rule. [Hint: the
Kullback-Leibler inequality states that for two densities f, g (for which f(x) = 0

whenever g(x) = 0), that Ef [log(f/g)] =
∫

log f(x)
g(x)f(x)dx > 0, with equality if and

only if f = g almost everywhere.]

(d) Suppose we have two forecasters making sequential forecast distributions f1t(ỹt)
and f2t(ỹt) for days t = 1, .., T . These forecast distributions are constructed as
follows. The first forecaster has a model p1(y|θ) and prior distribution p1(θ),
assesses a predictive density for the first observation Ỹ1 given by f11(ỹ1) = p1(ỹ1) =
∫

p1(ỹ1|θ)p1(θ)dθ. Having observed y1, they update to a posterior distribution
p1(θ|y1) ∝ p1(y1|θ)p1(θ), create a predictive distribution f12(ỹ2) = p1(ỹ2|y1), and so
on. When the temperature yt is observed, the forecaster is scored according to a
logarithmic scoring rule, so that on day t forecaster 1 scores L1t = log f1t(yt). Their
total score T1 =

∑

t L1t is recorded.

The second forecaster goes through a similar process using their own model. Show
that the quantity eT1−T2 is equivalent to the Bayes factor for comparing models p1
and p2 based on the data (y1, ..., yT ).

(e) Suppose we decided to take a weighted average of the two forecasters, so that we
adopted our own forecast distribution ft(ỹt) = w1,tf1t(ỹt) + w2,tf2t(ỹt), where
w1,t + w2,t = 1 and the ratio of the weights starts at w1,1/w2,1 = 1, and then is
updated according to the formula

w1,t+1

w2,t+1
=

eL1t

eL2t

w1,t

w2,t
.

Show that this is equivalent to assuming a full Bayesian procedure in which we
consider the hypotheses that each of the forecasters had the ‘correct’ model, and
initially assign equal prior probability to these two hypotheses.

(f) The Bayes factor gives the relative support for the two forecasters. Suppose we
only had the predictive distributions f1t(ỹt) for forecaster 1, and the observations
(y1, ..., yT ). Briefly, how we might assess the absolute quality of these predictions?

Part III, Paper 34



7

END OF PAPER

Part III, Paper 34


