MATHEMATICAL TRIPOS Part III

Friday, 7 June, 2013 $\,$ 9:00 am to 11:00 am $\,$

PAPER 33

NONPARAMETRIC STATISTICAL THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

Let X, X_1, \ldots, X_n be independent and identically distributed random variables, taking values in a measurable space T. Let \mathcal{H} be a class of measurable functions $T \to \mathbb{R}$, which satisfies $\mathbb{E}|h(X)| < \infty$ for all $h \in \mathcal{H}$.

State and prove a uniform law of large numbers for the random variables $\frac{1}{n} \sum_{i=1}^{n} h(X_i)$, $h \in \mathcal{H}$, assuming a condition on the existence of brackets which you should specify.

Now let $T = [0, \infty)$, $m(s) = \mathbb{E}[\exp(sX)]$, and suppose that $m(s) < \infty$ for $s \in [0, t]$. Define an estimator $\hat{m}_n(s)$ of m(s) which depends only on X_1, \ldots, X_n , and prove it satisfies

$$\sup_{s \in [0,t]} |\hat{m}_n(s) - m(s)| \stackrel{a.s.}{\to} 0.$$

 $\mathbf{2}$

Let X_1, \ldots, X_n be independent and identically-distributed real-valued random variables with density f, and $K = 1_{[-1/2,1/2]}$. For $K_h(x) = h^{-1}K(x/h)$, h > 0, define the convolution $K_h * f$, and the kernel density estimator $\hat{f}_{n,h}^K$. Show that

$$\mathbb{E}\|\hat{f}_{n,h}^K - K_h * f\|_2 \leqslant \kappa \sqrt{1/nh},$$

where $\|\cdot\|_2$ denotes the L^2 norm on \mathbb{R} , and κ is a constant you should specify.

Now let

$$x_0 < x_1 < \cdots < x_k,$$

and suppose f is constant on the intervals $(-\infty, x_0), [x_0, x_1), \ldots, [x_k, \infty)$. Show that, for a suitable choice of h,

$$\mathbb{E}\|\hat{f}_{n,h}^K - f\|_2 = O(n^{-1/4}).$$

3

Define the Haar scaling functions $\{\varphi_{j,k} : k \in \mathbb{Z}\}$, for $j \in \{0, 1, ...\}$, and the Haar basis $\{\varphi_{0,k}, \psi_{l,k} : l \in \{0, 1, ...\}, k \in \mathbb{Z}\}$. Prove that these sets are orthonormal sets in $L^2(\mathbb{R})$.

Given a locally-integrable function $f : \mathbb{R} \to \mathbb{R}$, define the Haar approximation $H_j(f)$ to f, both in terms of Haar scaling functions, and in terms of Haar basis functions. State why these two definitions are equivalent.

Now let $f : \mathbb{R} \to \mathbb{R}$ be symmetric, decreasing on $[0, \infty)$, and satisfy $f(x) \to 0$ as $x \to \infty$. Show that

$$||H_j(f) - f||_1 \leq f(0)2^{1-j}.$$

UNIVERSITY OF

 $\mathbf{4}$

Let *m* and *V* be functions $[0,1] \to \mathbb{R}$, and $x_i = i/n$. Also let Y_1, \ldots, Y_n be independent real-valued random variables, with Y_i having mean $m(x_i)$, and variance $V(x_i)$.

Let the kernel $K = 1_{[-1/2,1/2]}$, and define the corresponding local polynomial estimator $\hat{m}_{n,h}^P$ of order zero. Show that if $n \ge 2h^{-1}$, this estimator equals the Nadaraya-Watson estimator $\hat{m}_{n,h}^K$.

Now suppose that m is differentiable, with $m' \in L^{\infty}$, and V is bounded by $\sigma^2 > 0$. Prove that if $n \ge 2h^{-1}$, and $x \in [0, 1]$,

$$\mathbb{E}|\hat{m}_{n,h}^{P}(x) - m(x)| \leq \kappa \left(\frac{\sigma}{\sqrt{nh}} + \|m'\|_{\infty}h\right),\,$$

for a constant $\kappa > 0$.

END OF PAPER