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1

Let X,X1, . . . ,Xn be independent and identically distributed random variables,
taking values in a measurable space T. Let H be a class of measurable functions T → R,
which satisfies E|h(X)| <∞ for all h ∈ H.

State and prove a uniform law of large numbers for the random variables 1
n

∑n
i=1 h(Xi),

h ∈ H, assuming a condition on the existence of brackets which you should specify.

Now let T = [0,∞), m(s) = E[exp(sX)], and suppose that m(s) < ∞ for s ∈ [0, t].
Define an estimator m̂n(s) ofm(s) which depends only onX1, . . . ,Xn, and prove it satisfies

sup
s∈[0,t]

|m̂n(s)−m(s)| a.s.→ 0.

2

Let X1, . . . ,Xn be independent and identically-distributed real-valued random
variables with density f, and K = 1[−1/2,1/2]. For Kh(x) = h−1K(x/h), h > 0, define

the convolution Kh ∗ f, and the kernel density estimator f̂Kn,h. Show that

E‖f̂Kn,h −Kh ∗ f‖2 6 κ
√

1/nh,

where ‖ · ‖2 denotes the L2 norm on R, and κ is a constant you should specify.

Now let
x0 < x1 < · · · < xk,

and suppose f is constant on the intervals (−∞, x0), [x0, x1), . . . , [xk,∞). Show that, for
a suitable choice of h,

E‖f̂Kn,h − f‖2 = O(n−1/4).

3

Define the Haar scaling functions {ϕj,k : k ∈ Z}, for j ∈ {0, 1, . . . }, and the Haar
basis {ϕ0,k, ψl,k : l ∈ {0, 1, . . . }, k ∈ Z}. Prove that these sets are orthonormal sets in
L2(R).

Given a locally-integrable function f : R → R, define the Haar approximation Hj(f)
to f, both in terms of Haar scaling functions, and in terms of Haar basis functions. State
why these two definitions are equivalent.

Now let f : R → R be symmetric, decreasing on [0,∞), and satisfy f(x) → 0 as
x→ ∞. Show that

‖Hj(f)− f‖1 6 f(0)21−j .
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Let m and V be functions [0, 1] → R, and xi = i/n. Also let Y1, . . . , Yn be
independent real-valued random variables, with Yi having meanm(xi), and variance V (xi).

Let the kernel K = 1[−1/2,1/2], and define the corresponding local polynomial

estimator m̂P
n,h of order zero. Show that if n > 2h−1, this estimator equals the Nadaraya-

Watson estimator m̂K
n,h.

Now suppose that m is differentiable, with m′ ∈ L∞, and V is bounded by σ2 > 0.
Prove that if n > 2h−1, and x ∈ [0, 1],

E|m̂P
n,h(x)−m(x)| 6 κ

(

σ√
nh

+ ‖m′‖∞h
)

,

for a constant κ > 0.
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