

MATHEMATICAL TRIPOS Part III

Thursday, 30 May, 2013 1:30 pm to 3:30 pm

PAPER 31

STATISTICAL THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Let Y be a real-valued random variable with $\mathbb{E}(|Y|) < \infty$, and with continuous, strictly increasing distribution function F. For $\tau \in (0,1)$, let $\rho_{\tau}(y) = \tau y \mathbb{1}_{\{y \ge 0\}} + (1 - \tau)|y|\mathbb{1}_{\{y < 0\}}$. Find the unique minimiser, q_{τ} , of $\mathbb{E}\{\rho_{\tau}(Y - q)\}$ over $q \in \mathbb{R}$.

Now suppose $(X_1, Y_1), \ldots, (X_n, Y_n)$ are independent and identically distributed pairs taking values in $\mathbb{R}^m \times \mathbb{R}$ and satisfying

$$Y_i = g(X_i, \theta_0) + \epsilon_i, \quad i = 1, \dots, n,$$

where $\theta_0 \in \Theta \subseteq \mathbb{R}^p$. Assume that $\mathbb{E}(|\epsilon_1|) < \infty$ and that the conditional distribution function of ϵ_1 given X_1 is continuous and strictly increasing with τ th quantile zero. Suppose further that g is a known, bounded, continuous function and that $\mathbb{P}\{g(X_1, \theta) = g(X_1, \theta_0)\} = 1$ if and only if $\theta = \theta_0$. Let

$$\hat{\theta}_n \in \operatorname*{argmin}_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \rho_\tau (Y_i - g(X_i, \theta)).$$

Prove that if Θ is compact and if

$$\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} \left(Y_i - g(X_i, \theta) \right) - \mathbb{E} \left\{ \rho_{\tau} \left(Y_1 - g(X_1, \theta) \right) \right\} \right| \xrightarrow{p} 0,$$

then $\hat{\theta}_n \xrightarrow{p} \theta_0$ as $n \to \infty$.

[General results about *M*-estimators should not be used without proof.]

UNIVERSITY OF

2 Consider the linear model $Y = \beta_0 \mathbf{1}_n + X\beta + \epsilon$, where the columns of the deterministic design matrix $X = (x_1, \ldots, x_p) \in \mathbb{R}^{n \times p}$ are centred and have $||x_j||_2^2 = n$ for $j = 1, \ldots, p$, and where $\epsilon \sim N_n(0, \sigma^2 I)$. Define the Lasso estimator $\hat{\beta}_{\lambda}^L$ of β with regularisation parameter $\lambda > 0$.

Let $S = \{j \in \{1, \ldots, p\} : \beta_j \neq 0\}$, let $N = \{1, \ldots, p\} \setminus S$, and let s = |S|. For an arbitrary $A \subseteq \{1, \ldots, p\}$ and $b \in \mathbb{R}^p$, we write b_A for the vector in $\mathbb{R}^{|A|}$ obtained by extracting the components of b with indices that are in A. Assume that there exists $\phi_0 > 0$ such that for all $b \in \mathbb{R}^p$ with $\|b_N\|_1 \leq 3\|b_S\|_1$, we have

$$\|b_S\|_1^2 \leqslant \frac{s\|Xb\|_2^2}{n\phi_0^2}.$$

Prove that if $\lambda = A\sigma \sqrt{\frac{\log p}{n}}$ for some A > 0, then with probability at least $1 - p^{-(A^2/8 - 1)}$, we have

$$\frac{1}{n} \|X(\hat{\beta}_{\lambda}^{L} - \beta)\|_{2}^{2} + \lambda \|\hat{\beta}_{\lambda}^{L} - \beta\|_{1} \leqslant \frac{16A^{2}}{\phi_{0}^{2}} \frac{\sigma^{2}s\log p}{n}$$

[Tail probability bounds for normal random variables should not be used without proof.]

3 Consider the linear model $Y = \beta_0 \mathbf{1}_n + X\beta + \epsilon$, where the columns of the deterministic design matrix $X = (x_1, \ldots, x_p) \in \mathbb{R}^{n \times p}$ are centred and satisfy $||x_j||_2^2 = n$ for $j = 1, \ldots, p$, and where $\epsilon \sim N_n(0, \sigma^2 I)$. For a given regularisation parameter $\lambda > 0$, write down the optimisation problem used to obtain the *ridge regression estimator* $\hat{\beta}_{\lambda}^R$ of β . After having replaced each Y_i with $Y_i - \bar{Y}$, where $\bar{Y} = n^{-1} \sum_{i=1}^n Y_i$, write down a closed-form expression for $\hat{\beta}_{\lambda}^R$.

Assume for now that n > p and that $\operatorname{rank}(X) = p$. Give a brief, intuitive explanation of how the ridge regression estimator differs from the maximum likelihood estimator $\hat{\beta} = (X^T X)^{-1} X^T Y$, and also explain why the ridge regression estimator might be preferable when some of the columns of X are nearly collinear.

Without assuming that n > p or that rank(X) = p, show that

$$\lim_{\lambda \searrow 0} \hat{\beta}_{\lambda}^{R} = (X^{T}X)^{+} X^{T}Y,$$

where $(X^T X)^+$ denotes the Moore–Penrose pseudoinverse of $X^T X$.

UNIVERSITY OF

4 In the context of testing null hypotheses H_1, \ldots, H_m , define the Familywise Error Rate (FWER). Letting P_i denote the *p*-value corresponding to H_i , define the Bonferroni correction for controlling the FWER at level $\alpha \in (0, 1)$. Assuming that the *p*-values corresponding to true null hypotheses have a U(0, 1) distribution, prove that the procedure does indeed control the FWER at level α .

Now denote the ordered *p*-values as $P_{(1)} \leq \ldots \leq P_{(m)}$, and let $H_{(i)}$ denote the null hypothesis corresponding to $P_{(i)}$. Holm's step-down procedure rejects $H_{(1)}, \ldots, H_{(k)}$, where

$$k = \max\left\{i \in \{1, \dots, m\} : P_{(1)} \leqslant \frac{\alpha}{m}, P_{(2)} \leqslant \frac{\alpha}{m-1}, \dots, P_{(i)} \leqslant \frac{\alpha}{m-i+1}\right\}.$$

Assuming again that the *p*-values corresponding to true null hypotheses have a U(0,1) distribution, prove that Holm's step-down procedure controls the FWER at level α .

Now define the *False Discovery Rate* (FDR). Define the Benjamini–Hochberg (BH) procedure for controlling the FDR at level $\alpha \in (0, 1)$. Under conditions that you should specify, prove that the BH procedure does indeed control the FDR at level α .

END OF PAPER