MATHEMATICAL TRIPOS Part III

Tuesday, 4 June, 2013 $\,$ 1:30 pm to 3:30 pm

PAPER 29

TIME SERIES AND MONTE CARLO INFERENCE

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Time Series

A stationary process $\mathbf{X} = (X_t)$ is related to $\boldsymbol{\epsilon} = (\epsilon_t)$, a white-noise process with variance σ^2 , by

 $\mathbf{2}$

$$X_t = \sum_{r=-\infty}^{\infty} a_r \epsilon_{t-r} \tag{(*)}$$

and this relationship can be inverted, as

$$\epsilon_t = \sum_{r=-\infty}^{\infty} b_r X_{t-r}.$$
(**)

Under what conditions on the coefficients in (*) and (**) is this relationship:

- (i) causal?
- (ii) invertible?

Consider an ARMA(p,q) process given by

$$\phi(B)X_t = \theta(B)\epsilon_t \tag{(\dagger)}$$

where $\phi(z) \equiv 1 - \sum_{r=1}^{p} \phi_r z^r$ and $\theta(z) \equiv 1 + \sum_{s=1}^{q} \theta_s z^s$ are polynomials, and *B* is the back-shift operator. Under what conditions is (†) a causal and invertible representation?

The stationary ARMA(1, 1) process X can be represented as

$$X_t = 2X_{t-1} + 2\epsilon_{t-1} + \epsilon_t. \tag{\ddagger}$$

Is this representation causal and/or invertible?

Show that X has an alternative ARMA(1, 1) representation as

$$X_t = \frac{1}{2}X_{t-1} + \frac{1}{2}\eta_{t-1} + \eta_t$$

for some white-noise process η of variance σ^2 .

Compute the best linear predictor of X_1 , based on the semi-infinite history ($X_t : t \leq 0$). [You are not required to prove convergence of infinite series.]

CAMBRIDGE

2 Time Series

Let $X = (X_t)$ be a weakly stationary process with autocovariance function $\gamma = (\gamma_r : r = 0, 1, ...)$. When does the spectral density function $f : [0, \pi] \to \mathbb{R}$ of X exist? For the case that it does, express $f(\omega)$ in terms of γ , and γ_k in terms of f.

Show that, if $\mathbf{Z} = \mathbf{X} + \mathbf{Y}$ (*i.e.*, $Z_t = X_t + Y_t$, all t), where \mathbf{X} and \mathbf{Y} are independent stationary processes with respective spectral densities f_X and f_Y , then \mathbf{Z} has spectral density $f_Z = f_X + f_Y$.

Suppose now that **X** has the ARMA $(1, 1; \theta, \phi)$ representation:

$$X_t = \phi X_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$$

where the driving white noise process $\boldsymbol{\epsilon}$ has variance v; and that \boldsymbol{Y} is white noise with variance w, independently of \boldsymbol{X} . What is the spectral density of \boldsymbol{X} ? Find the spectral density of $\boldsymbol{Z} = \boldsymbol{X} + \boldsymbol{Y}$, and hence show that \boldsymbol{Z} can be represented as ARMA $(1, 1; \alpha, \phi)$, where

$$\left(\frac{1+\alpha}{1-\alpha}\right)^2 = \frac{v(1+\theta)^2 + w(1-\phi)^2}{v(1-\theta)^2 + w(1+\phi)^2}.$$

Find the variance λ of the white noise process driving this representation, in terms of $(\theta, \phi, v, w, \alpha)$.

3 Monte Carlo Inference

Describe the *Box-Muller algorithm* for generating independent random variables from the standard normal distribution Norm(0, 1), and explain why it works.

Explain how this algorithm could be applied to generate independent binary variables Y_1, \ldots, Y_n , such that $\Pr(Y_i = 1) = \Phi(x_i)$, where Φ is the standard normal distribution function and x_1, \ldots, x_n are given constants.

Now suppose $Pr(Y_i = 1) = \Phi(\beta x_i)$ where β is an unknown parameter which is assigned a Norm(0,1) prior distribution. We observe $Y_i = y_i$ (i = 1, ..., n), and wish to simulate from the posterior distribution of β . Explain in detail how you could use data augmentation and Gibbs sampling to do this. [You need not compute the required distributions explicitly, but should indicate how you would simulate from them.]

CAMBRIDGE

4 Monte Carlo Inference

An observable X arises from one of a finite collection $\{M_j : j \in \mathcal{J}\}$ of possible models. The prior probability that model M_j is operating is ϖ_j . When it is, X has density function $p_j(x | \theta_j)$, where $\theta_j \in \mathbb{R}^{d_j}$ is a parameter having prior density $\pi_j(\theta_j)$ with respect to Lebesgue measure on \mathbb{R}^{d_j} . A reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm is used to estimate the posterior distribution over models, as well as within models, given data X = x. For the special case that a move is proposed between distinct models of equal dimension, explain how this operates, and in particular specify the acceptance probability. [No proofs are required.]

Random variables X_1, X_2 have independent Poisson distributions. There are two possible models. Under model M_1, X_i has mean γ_i (i = 1, 2), where γ_1 and γ_2 are assigned independent $\Gamma(a, b)$ prior distributions (a, b > 0 known). Under model M_2 , both X_1 and X_2 have the same mean, γ_1 , with prior distribution $\Gamma(a, b)$. Initially both models are regarded as equally probable. We observe $(X_1, X_2) = (x_1, x_2)$ and wish to use a RJ-MCMC procedure to estimate the posterior probabilities of the two models. Describe suitable moves between the two models.

[*Hint:* Regard M_2 as having an additional parameter γ_2 that has no effect on the distribution of (X_1, X_2) .]

END OF PAPER