

#### MATHEMATICAL TRIPOS Part III

Tuesday, 4 June, 2013  $\,$  9:00 am to 11:00 am  $\,$ 

### PAPER 28

### ACTUARIAL STATISTICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

## CAMBRIDGE

 $\mathbf{1}$ 

Let N be the number of claims on a particular portfolio of insurance policies in a year and let  $p_n$  denote  $\mathbb{P}(N = n)$ , n = 0, 1, 2, ...

(a) Suppose that

$$p_n = \left(a + \frac{b}{n}\right) p_{n-1}, \quad n = 1, 2, \dots,$$
(1)

for some constants a and b. Show that the probability generating function  $G_N(z)$  of N satisfies

$$(1-az)G'_N(z) = (a+b)G_N(z).$$

- (b) Now suppose that  $\lambda$  is a positive random variable with moment generating function  $M_{\lambda}$ , and that, given  $\lambda$ , N has a Poisson distribution with mean  $\lambda$ .
  - (i) Show that  $G_N(z) = M_\lambda(z-1)$ .
  - (ii) Suppose that the random variable  $\lambda$  has the same distribution as  $\alpha + Y$  where  $\alpha$  is a positive constant and Y has an exponential distribution with mean  $1/\beta$ . Find an expression for  $G_N$  in terms of  $\alpha$  and  $\beta$ .

Hence show that N has the same distribution as the sum of two independent random variables V and W, where V has a Poisson distribution and W has a geometric distribution. Use this to write down an expression for  $p_n$  as a finite sum.

Show that

$$(1 + \beta - z)G'_N(z) = \{1 + \alpha(\beta + 1) - \alpha z\}G_N(z).$$

Hence obtain an expression for  $p_n$  in terms of  $p_{n-1}$ ,  $p_{n-2}$ , n,  $\alpha$  and  $\beta$ , for  $n \ge 2$ . Explain how the  $p_n$ s may be calculated recursively. Show that when  $\alpha = 0$ , the  $p_n$ s satisfy (1) for some constants a and b which you should specify.

## CAMBRIDGE

3

Let S be the total amount claimed in one year on a portfolio where the number N of claims in one year has a Poisson distribution with mean  $\lambda$  and the claim sizes are independent identically distributed positive random variables independent of N. Derive expressions for the mean and variance of S in terms of  $\lambda$  and the moments of the claim sizes. Find the moment generating function of S in terms of  $\lambda$  and the moment generating function of the claim sizes.

A portfolio contains two independent risks. The number of claims in one year on risk *i* has a Poisson distribution with mean  $\lambda_i$ , i = 1, 2. The claim sizes on risk *i* are independent identically distributed positive random variables with probability density function  $f_i(x)$ , mean  $\mu_i$  and finite variance  $\sigma_i^2$ , i = 1, 2. For each risk, the claim sizes are independent of the number of claims. Let *T* be the total amount claimed in a year on the whole portfolio. Show that *T* has a compound Poisson distribution, and find the mean and variance of *T*.

Suppose that the direct insurer takes out a reinsurance contract on the portfolio, so that, for either risk, for a claim size x the direct insurer pays g(x) and the reinsurer pays x - g(x) for a given function g. Let  $T_I$  be the total amount paid by the direct insurer in one year, taking reinsurance into account. What is the distribution of  $T_I$ ? Write down the function g, and the mean and variance of  $T_I$ ,

- (a) under quota share reinsurance with retained proportion  $\alpha$  (0 <  $\alpha$  < 1);
- (b) under excess of loss reinsurance with retention level M (> 0).

 $\mathbf{2}$ 

# UNIVERSITY OF

3

In a classical risk model for a portfolio of insurance policies, claims arrive in a Poisson process with rate  $\lambda$  (> 0) and claims are independent identically distributed positive random variables with distribution function F, moment generating function Mand mean  $\mu$ , independent of the arrivals process. The premium rate is c (> 0). Assume that the relative safety loading  $\rho$  is positive and that there exists  $r_{\infty}$ ,  $0 < r_{\infty} \leq \infty$ , such that  $M(r) \uparrow \infty$  as  $r \uparrow r_{\infty}$ . Define the probability of ruin  $\psi(u)$  with initial capital u and write down an equation satisfied by the adjustment coefficient R.

Let  $\varphi(u) = 1 - \psi(u)$ . You are given that  $\varphi(u)$  satisfies

$$\varphi(u) = 1 - \frac{\lambda\mu}{c} + \frac{\lambda}{c} \int_0^u \varphi(u-x) \{1 - F(x)\} dx.$$

Derive a renewal-type equation for  $Z(u) = e^{Ru}\psi(u)$ . Quoting without proof results from renewal theory as necessary, derive an expression for  $\lim_{u\to\infty} Z(u)$ .

Suppose that each claim is equally likely to be either exponentially distributed with mean 1 or exponentially distributed with mean 2. Show that

$$1 - F(x) = \frac{1}{2} \left( e^{-x} + e^{-x/2} \right),$$

and write down the value of  $\mu$ . Explain why the adjustment coefficient R is in (0, 1/2). Find  $\lim_{u\to\infty} e^{Ru}\psi(u)$  in terms of  $\rho$  and R.  $\mathbf{4}$ 

- (a) Let  $X_i$  be the number of claims on a risk during accounting period i, i = 1, 2, ...,and suppose that, given  $\lambda$ , the  $X_i$ s are conditionally independent and identically distributed. Suppose that  $X_1, ..., X_n$  are observed. Derive the Bühlmann credibility estimate of  $\mathbb{E}(X_{n+1}|\lambda)$ .
- (b) Suppose that, given  $\lambda$ , the  $X_i$ s have a Poisson distribution with mean  $\lambda$ , and that a priori  $\lambda$  has a uniform distribution on (1, 3).
  - (i) Suppose that one claim is observed in the first year. Find the Bühlmann credibility estimate of the expected number of claims in year 2.
  - (ii) Write down the Bühlmann credibility estimate of  $\mathbb{E}(X_{n+1}|\lambda)$  based on observations  $X_1 = x_1, \ldots, X_n = x_n$ .
  - (iii) Suppose that  $x_{n+1}$  claims are observed in year n+1. For which values of  $x_{n+1}$  is the Bühlmann credibility estimate of  $\mathbb{E}(X_{n+2}|\lambda)$  smaller that the Bühlmann credibility estimate in (ii)?
  - (iv) For the situation in (i), find the Bayesian estimate (under quadratic loss) of the expected number of claims in year 2.

### END OF PAPER