MATHEMATICAL TRIPOS Part III

Friday, 7 June, 2013 1:30 pm to 3:30 pm

PAPER 27

SCHRAMM–LOEWNER EVOLUTIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let K be a compact \mathbb{H} -hull and let $H = \mathbb{H} \setminus K$. Let $S \subset \delta H$, where δH stands for the intrinsic boundary $\hat{H} \setminus H$. Let z = x + iy and let B be a complex Brownian motion.

(i) Let $z \in H$, and assume that $B_0 = z$. Let $T(H) = \inf\{t \ge 0 : B_t \notin H\}$. Show that as $t \uparrow T(H)$, B_t converges in \hat{H} to a point $\hat{B}_{T(H)}$ of δH , almost surely. Show that for all Borel sets $S \subset \delta H$,

$$\lim_{y \to \infty, x/y \to 0} \pi y \mathbb{P}_z(\hat{B}_{T(H)} \in S) = \text{Leb } (g_K(S)),$$

where g_K is the mapping-out function of K. You may use without proof the following formula for the harmonic measure in \mathbb{H} :

$$h_{\mathbb{H}}(u+iv;t) = \frac{v}{\pi((t-u)^2 + v^2)}; \quad t \in \mathbb{R}.$$

(ii) Let $H_0 = \{x \in \mathbb{R} : H \text{ is a neighbourhood of } x \text{ in } \mathbb{H}\}$. By considering $S = \delta H \setminus H_0$ or otherwise, deduce briefly that

$$\operatorname{cap}(K) := \lim_{y \to \infty} \pi y \mathbb{P}_{iy}(B_{T(H)} \in K)$$

is well-defined. You may assume the fact that g_K extends to a homeomorphism on $H \cup H_0$. Show that if K' is another compact \mathbb{H} -hull such that $K \subset K'$ then $\operatorname{cap}(K) \leq \operatorname{cap}(K')$. Deduce that $\operatorname{cap}(K) \leq 4 \operatorname{rad}(K)$. [Hint: If $K' = \overline{\mathbb{D}} \cap \mathbb{H}$ then $g_{K'}(z) = z + z^{-1}$.]

(iii) Now assume that $\operatorname{rad}(K) = 1$, that $0 \in \overline{K}$ and also that $x + iy \in \overline{K}$ with $x^2 + y^2 = 1$. By considering a reflection about the segment I = [x, x + iy] show that $\operatorname{cap}(K) \ge 1/2$. [Hint: If K = [0, i] then $g_K(z) = \sqrt{z^2 + 1}$. Consider the image of a segment (0, a] under g_K .]

$\mathbf{2}$

Let $(\gamma_t, t \ge 0)$ be an $SLE(\kappa)$ curve, with driving function $(\xi_t, t \ge 0)$. Let $(g_t(z), t < \zeta(z), z \in \mathbb{H})$ denote the associated Loewner flow.

(i) For $z \in \mathbb{H}$, and $t < \zeta(z)$ let $h_t(z) = \arg(g_t(z) - \xi_t)$. Show that $(h_t(z), t < \zeta(z))$ is a martingale if and only if $\kappa = 4$.

(ii) Let t > 0 and let $H_t = \mathbb{H} \setminus \gamma[0, t]$. Show that $h_t(z)$ solves a Dirichlet problem in H_t and identify the boundary conditions.

(iii) Assume $\kappa = 4$. Let $z \in \mathbb{H} \setminus \gamma[0, \infty)$. Show that $F(z) = \lim_{t\to\infty} h_t(z)$ exists almost surely and compute F(z).

UNIVERSITY OF

3

(i) Write down Loewner's equation in the complex plane \mathbb{C} for a driving function $(\xi_t, t \ge 0)$.

(ii) Let $\xi_t = -\sqrt{\kappa}W_t$, where W_t is a one-dimensional standard Brownian motion, and let g_t denote the associated Loewner flow. Let $x \in \mathbb{R}$ and let $X_t(x) = (g_t(x\sqrt{\kappa}) - \xi_t)/\sqrt{\kappa}$. Write down the stochastic differential equation for $X_t(x)$ (let $a = 2/\kappa$). Show that $X_t(x)$ hits zero a.s. if a < 1/2 and doesn't hit zero a.s. if a > 1/2.

(iii) For what range of values of the $SLE(\kappa)$ curve simple? Justify your answer.

$\mathbf{4}$

(i) Define the notion of *compact* \mathbb{H} -hull. Let K be a compact \mathbb{H} -hull. Define the mapping-out function g_K and the half-plane capacity hcap(K). State (without proof) the continuity estimate and the differentiability estimate for g_K .

(ii) Let $(K_t)_{t\geq 0}$ be an increasing family of compact \mathbb{H} -hulls. Explain what it means to say that $(K_t)_{t\geq 0}$ satisfies the *local growth* property. Assuming the local growth property, define the associated *Loewner transform* $(\xi_t, t \geq 0)$, and show that $(\xi_t, t \geq 0)$ is continuous.

Assume that hcap $(K_t) = 2t$. Find a differential equation satisfied by $g_t(z) = g_{K_t}(z)$, justifying your answer.

END OF PAPER