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Let H be a real separable Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
(a) Show that there exists a probability space (Ω,F ,P) on which a process X = {X(h) :
h ∈ H} can be defined with the properties that

1. X(ag + bh) = aX(g) + bX(h) almost surely for all a, b ∈ R and g, h ∈ H, and

2. X(h) ∼ N(0, ‖h‖2) for all h ∈ H.

[You may use, without proof, the following facts: there exists a probability space on which
an i.i.d. sequence of N(0, 1) random variables can be defined, and there exists a countable
orthonormal basis of H.]

(b) Show that the processX from part (a) is such that the random variablesX(h1), . . . ,X(hn)
are jointly normal for all h1, . . . , hn ∈ H. What is Cov(X(g),X(h))?

(c) Without appealing to Wiener’s theorem on the existence of Brownian motion, prove
that there exists a probability space on which a process (Wt)t>0 can be defined with the
properties that

1. W0 = 0,

2. Wt −Ws ∼ N(0, t− s) for all 0 6 s < t, and

3. the random variables Wt0 −Wt1 , . . . ,Wtn −Wtn−1
are independent for all 0 6 t0 <

t1 < · · · < tn.

(d) Let X be the process from part (a). Fix k ∈ H and define an equivalent probability
measure Q by

dQ

dP
= eX(k)−‖k‖2/2.

Show that, under this measure Q, the random variable X(h) − 〈h, k〉 has the N(0, ‖h‖2)
distribution.
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Let (Wt)t>0 be a real Brownian motion generating the right-continuous, completed
filtration (Ft)t>0. Let T > 0 be a non-random constant and let φ be a bounded,
continuously differentiable function with bounded derivative φ′.

(a) Show that for any 0 6 s < t and bounded Fs-measurable random variable K we have

E [φ (WT )K(Wt −Ws)] = E
[

φ′ (WT )K(T ∧ t− T ∧ s)
]

[You may use the following fact without proof: if X and Y are jointly normal random
variables with E(Y ) = 0, then E[φ(X)Y ] = E[φ′(X)]Cov(X,Y ).]

(b) Show that for any predictable α such that E
(∫∞

0 α2
udu

)

< ∞ we have

E

[

φ (WT )

∫ ∞

0
αu dWu

]

= E

[
∫ T

0
φ′ (WT )αu du

]

.

(c) Use Itô’s martingale representation theorem to prove that there exists a predictable
process β such that E

(∫∞
0 β2

udu
)

< ∞ and a constant c such that

φ (WT ) = c+

∫ ∞

0
βu dWu

How is c related to φ(WT )? In what sense is the process β unique? You may use standard
facts about martingales without proof.

(d) Use part (b) to show that

E

[
∫ ∞

0

(

βu − φ′(WT )1{t6T}

)

αu du

]

= 0

for any predictable α such that E
(∫∞

0 α2
udu

)

< ∞.

(e) Conclude that
βt = E

[

φ′ (WT ) |Ft

]1{t6T}

up to the sense of uniqueness from part (c).
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Let (Xt)06t61 be a continuous martingale with respect to a filtration (Ft)06t61.
Suppose that X0 = 0 and that there exists constant C > 0 such that |Xt(ω)| 6 C for all
(t, ω) ∈ [0, 1] × Ω. Let

A
(n)
t =

2n
∑

k=1

(Xk2−n∧t −X(k−1)2−n∧t)
2

and

M
(n)
t =

1

2
(X2

t −A
(n)
t ).

(a) Show that

E[(M
(n)
1 )2] 6 C4

(b) Show that

E[(A
(n)
1 )2] 6 10C4

(c) Using the formula

M
(n)
1 −M

(m)
1 =

2n−1
∑

j=1

(Xj2−n −X⌊j2m−n⌋2−m)(X(j+1)2−n −Xj2−n),

for n > m, show that

E[(M
(n)
1 −M

(m)
1 )2] → 0 as m,n → ∞.

Here the symbol ⌊y⌋ denotes the greatest integer less than or equal to y.

(d) Show that

E[ sup
06t61

(A
(n)
t −A

(m)
t )2] → 0 as m,n → ∞.

You may use, without proof, the fact that M (n) is a continuous martingale for each n.
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Consider the SDE
dXt = tanhXt dt+ dWt (*)

where W is a scalar Brownian motion defined on a probability space (Ω,F ,P).

(a) Prove that (*) has a unique strong solution starting from any intial point X0. You
may use, without proof, any theorem from the course as long as it is clearly stated.

(b) Show that the process et/2

coshXt
is a postitive martingale.

[Recall that d
dx cosh x = sinhx and tanhx = sinhx

cosh x .]

(c) Fix constants T > 0 and X0 = x, define an equivalent probability measure Q by

dQ

dP
=

coshx

coshXT
eT/2

Show that the process (Ŵt)06t6T is a Q-Brownian motion, where Ŵt = Xt − x.

(d) Use part (c) to compute the density of the random variable XT under the measure P.

5

Let X be a continuous local martingale in a filtration (Ft)t>0, and suppose that
X0 = 0 and that X has conditionally symmetric increments in the sense that

E[g(Xt −Xs)|Fs] = E[g(Xs −Xt)|Fs]

for all 0 6 s 6 t and bounded measurable g. Suppose that the filtration is such that each
martingale has a continuous modification.

Fix constants θ ∈ R and T > 0 and let M be the continuous martingale such that

Mt = E(eiθXT |Ft) for 0 6 t 6 T,

where i =
√
−1.

(a) Show that the process e−i2θXtMt is a martingale.

(b) Show that d〈M,X〉t = iθMtd〈X〉t.

(c) Show that the process e−iθXt−
1

2
θ2〈X〉tMt is a martingale.

(d) Conclude that E(eiθXT ) = E(e−
1

2
θ2〈X〉T ).

(e) Suppose Xt ∼ N(0, t) for all t > 0. Show that X is a Brownian motion.
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Let X be a d-dimensional weak solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dWt,

where b : Rd → Rd and σ : Rd → Rd×n are given continuous functions and W is an n-
dimensional Brownian motion. Assume that the initial condition X0 ∈ Rd is not random.

(a) Show that there exists a second order partial differential operator L such that

f(Xt)−
∫ t

0
(Lf)(Xs)ds

is a local martingale for all twice-continuously differentiable functions f .

(b) Let λ > 0 be a given constant, and let u : Rd → R be a given twice-continuously
differentiable function such that

Lu = λu

Show that the process M defined by Mt = e−λtu(Xt) is a local martingale.

(c) Let D ⊂ Rd be an open set. Define a stopping time by

T = inf{t > 0 : Xt ∈ ∂D}

where ∂D is the boundary of D. Suppose u is bounded on D ∪ ∂D. Assuming X0 ∈ D,
show that the stopped process MT = (Mt∧T )t>0 is a martingale, and converges a.s. as
t → ∞.

(d) Suppose further that u(x) = 1 for all x ∈ ∂D. Show that

E(e−λT ) = u(X0)

(e) Let B be a real Brownian motion and a ∈ R a constant, and define a stopping time by

S = inf{s > 0 : y +Bs + as = 0}

where y > 0 is a constant. For every λ > 0, compute

E(e−λS)

in terms of a, λ and y.
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