MATHEMATICAL TRIPOS Part III

Friday, 31 May, 2013 $\,$ 9:00 am to 12:00 pm

PAPER 25

STOCHASTIC CALCULUS AND APPLICATIONS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let *H* be a real separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$.

 $\mathbf{2}$

(a) Show that there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which a process $X = \{X(h) : h \in H\}$ can be defined with the properties that

- 1. X(ag+bh) = aX(g) + bX(h) almost surely for all $a, b \in \mathbb{R}$ and $g, h \in H$, and
- 2. $X(h) \sim N(0, ||h||^2)$ for all $h \in H$.

[You may use, without proof, the following facts: there exists a probability space on which an i.i.d. sequence of N(0, 1) random variables can be defined, and there exists a countable orthonormal basis of H.]

(b) Show that the process X from part (a) is such that the random variables $X(h_1), \ldots, X(h_n)$ are jointly normal for all $h_1, \ldots, h_n \in H$. What is Cov(X(g), X(h))?

(c) Without appealing to Wiener's theorem on the existence of Brownian motion, prove that there exists a probability space on which a process $(W_t)_{t\geq 0}$ can be defined with the properties that

- 1. $W_0 = 0$,
- 2. $W_t W_s \sim N(0, t s)$ for all $0 \leq s < t$, and
- 3. the random variables $W_{t_0} W_{t_1}, \ldots, W_{t_n} W_{t_{n-1}}$ are independent for all $0 \le t_0 < t_1 < \cdots < t_n$.

(d) Let X be the process from part (a). Fix $k \in H$ and define an equivalent probability measure \mathbb{Q} by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = e^{X(k) - \|k\|^2/2}.$$

Show that, under this measure \mathbb{Q} , the random variable $X(h) - \langle h, k \rangle$ has the $N(0, ||h||^2)$ distribution.

 $\mathbf{2}$

Let $(W_t)_{t\geq 0}$ be a real Brownian motion generating the right-continuous, completed filtration $(\mathcal{F}_t)_{t\geq 0}$. Let T > 0 be a non-random constant and let ϕ be a bounded, continuously differentiable function with bounded derivative ϕ' .

(a) Show that for any $0 \leq s < t$ and bounded \mathcal{F}_s -measurable random variable K we have

$$\mathbb{E}\left[\phi\left(W_{T}\right)K(W_{t}-W_{s})\right]=\mathbb{E}\left[\phi'\left(W_{T}\right)K(T\wedge t-T\wedge s)\right]$$

[You may use the following fact without proof: if X and Y are jointly normal random variables with $\mathbb{E}(Y) = 0$, then $\mathbb{E}[\phi(X)Y] = \mathbb{E}[\phi'(X)]\text{Cov}(X,Y)$.]

(b) Show that for any predictable α such that $\mathbb{E}\left(\int_{0}^{\infty} \alpha_{u}^{2} du\right) < \infty$ we have

$$\mathbb{E}\left[\phi\left(W_{T}\right)\int_{0}^{\infty}\alpha_{u}\ dW_{u}\right] = \mathbb{E}\left[\int_{0}^{T}\phi'\left(W_{T}\right)\alpha_{u}\ du\right].$$

(c) Use Itô's martingale representation theorem to prove that there exists a predictable process β such that $\mathbb{E}\left(\int_{0}^{\infty} \beta_{u}^{2} du\right) < \infty$ and a constant c such that

$$\phi\left(W_T\right) = c + \int_0^\infty \beta_u \ dW_u$$

How is c related to $\phi(W_T)$? In what sense is the process β unique? You may use standard facts about martingales without proof.

(d) Use part (b) to show that

$$\mathbb{E}\left[\int_0^\infty \left(\beta_u - \phi'(W_T)\mathbb{1}_{\{t \leq T\}}\right) \alpha_u \ du\right] = 0$$

for any predictable α such that $\mathbb{E}\left(\int_0^\infty \alpha_u^2 du\right) < \infty$.

(e) Conclude that

 $\beta_{t} = \mathbb{E}\left[\phi'\left(W_{T}\right)|\mathcal{F}_{t}\right]\mathbb{1}_{\left\{t \leq T\right\}}$

up to the sense of uniqueness from part (c).

3

Let $(X_t)_{0 \leq t \leq 1}$ be a continuous martingale with respect to a filtration $(\mathcal{F}_t)_{0 \leq t \leq 1}$. Suppose that $X_0 = 0$ and that there exists constant C > 0 such that $|X_t(\omega)| \leq C$ for all $(t, \omega) \in [0, 1] \times \Omega$. Let

$$A_t^{(n)} = \sum_{k=1}^{2^n} (X_{k2^{-n} \wedge t} - X_{(k-1)2^{-n} \wedge t})^2$$

and

$$M_t^{(n)} = \frac{1}{2}(X_t^2 - A_t^{(n)}).$$

(a) Show that

$$\mathbb{E}[(M_1^{(n)})^2] \leqslant C^4$$

(b) Show that

$$\mathbb{E}[(A_1^{(n)})^2] \leqslant 10C^4$$

(c) Using the formula

$$M_1^{(n)} - M_1^{(m)} = \sum_{j=1}^{2^n - 1} (X_{j2^{-n}} - X_{\lfloor j2^{m-n} \rfloor 2^{-m}}) (X_{(j+1)2^{-n}} - X_{j2^{-n}}),$$

for n > m, show that

$$\mathbb{E}[(M_1^{(n)} - M_1^{(m)})^2] \to 0 \text{ as } m, n \to \infty.$$

Here the symbol |y| denotes the greatest integer less than or equal to y.

(d) Show that

$$\mathbb{E}[\sup_{0\leqslant t\leqslant 1}(A_t^{(n)}-A_t^{(m)})^2]\to 0 \text{ as } m,n\to\infty.$$

You may use, without proof, the fact that $M^{(n)}$ is a continuous martingale for each n.

 $\mathbf{4}$

Consider the SDE

$$dX_t = \tanh X_t \ dt + dW_t \tag{*}$$

where W is a scalar Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

(a) Prove that (*) has a unique strong solution starting from any initial point X_0 . You may use, without proof, any theorem from the course as long as it is clearly stated.

5

(b) Show that the process $\frac{e^{t/2}}{\cosh X_t}$ is a postitive martingale.

[Recall that
$$\frac{d}{dx} \cosh x = \sinh x$$
 and $\tanh x = \frac{\sinh x}{\cosh x}$.

(c) Fix constants T > 0 and $X_0 = x$, define an equivalent probability measure \mathbb{Q} by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \frac{\cosh x}{\cosh X_T} e^{T/2}$$

Show that the process $(\hat{W}_t)_{0 \leq t \leq T}$ is a Q-Brownian motion, where $\hat{W}_t = X_t - x$.

(d) Use part (c) to compute the density of the random variable X_T under the measure \mathbb{P} .

 $\mathbf{5}$

Let X be a continuous local martingale in a filtration $(\mathcal{F}_t)_{t\geq 0}$, and suppose that $X_0 = 0$ and that X has conditionally symmetric increments in the sense that

$$\mathbb{E}[g(X_t - X_s)|\mathcal{F}_s] = \mathbb{E}[g(X_s - X_t)|\mathcal{F}_s]$$

for all $0 \leq s \leq t$ and bounded measurable g. Suppose that the filtration is such that each martingale has a continuous modification.

Fix constants $\theta \in \mathbb{R}$ and T > 0 and let M be the continuous martingale such that

 $M_t = \mathbb{E}(e^{i\theta X_T}|\mathcal{F}_t) \text{ for } 0 \leq t \leq T,$

where $i = \sqrt{-1}$.

- (a) Show that the process $e^{-i2\theta X_t}M_t$ is a martingale.
- (b) Show that $d\langle M, X \rangle_t = i\theta M_t d\langle X \rangle_t$.
- (c) Show that the process $e^{-i\theta X_t \frac{1}{2}\theta^2 \langle X \rangle_t} M_t$ is a martingale.
- (d) Conclude that $\mathbb{E}(e^{i\theta X_T}) = \mathbb{E}(e^{-\frac{1}{2}\theta^2 \langle X \rangle_T}).$
- (e) Suppose $X_t \sim N(0, t)$ for all $t \ge 0$. Show that X is a Brownian motion.

6

Let X be a d-dimensional weak solution of the SDE

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t,$$

6

where $b : \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma : \mathbb{R}^d \to \mathbb{R}^{d \times n}$ are given continuous functions and W is an *n*-dimensional Brownian motion. Assume that the initial condition $X_0 \in \mathbb{R}^d$ is not random.

(a) Show that there exists a second order partial differential operator \mathcal{L} such that

$$f(X_t) - \int_0^t (\mathcal{L}f)(X_s) ds$$

is a local martingale for all twice-continuously differentiable functions f.

(b) Let $\lambda > 0$ be a given constant, and let $u : \mathbb{R}^d \to \mathbb{R}$ be a given twice-continuously differentiable function such that

$$\mathcal{L}u = \lambda u$$

Show that the process M defined by $M_t = e^{-\lambda t} u(X_t)$ is a local martingale.

(c) Let $\mathcal{D} \subset \mathbb{R}^d$ be an open set. Define a stopping time by

$$T = \inf\{t \ge 0 : X_t \in \partial \mathcal{D}\}$$

where $\partial \mathcal{D}$ is the boundary of \mathcal{D} . Suppose u is bounded on $\mathcal{D} \cup \partial \mathcal{D}$. Assuming $X_0 \in \mathcal{D}$, show that the stopped process $M^T = (M_{t \wedge T})_{t \geq 0}$ is a martingale, and converges a.s. as $t \to \infty$.

(d) Suppose further that u(x) = 1 for all $x \in \partial \mathcal{D}$. Show that

$$\mathbb{E}(e^{-\lambda T}) = u(X_0)$$

(e) Let B be a real Brownian motion and $a \in \mathbb{R}$ a constant, and define a stopping time by

$$S = \inf\{s \ge 0 : y + B_s + as = 0\}$$

where y > 0 is a constant. For every $\lambda > 0$, compute

$$\mathbb{E}(e^{-\lambda S})$$

in terms of a, λ and y.

END OF PAPER