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a) State the almost sure martingale convergence theorem.
Give an example of a martingale that satisfies the hypotheses of the almost sure martingale
convergence theorem, but fails to converge in L1.

b) Let X = (Xn : n > 1) be a zero mean martingale in L2. Show that, for λ > 0,

P

(

max
16k6n

Xk > λ

)

6
E[X2

n]

λ2 + E[X2
n]
.

[Hint: The function x 7→ (x+ c)2 is convex.]

2

a) State the definition of a Lévy process.

b) Let ϕX denote the characteristic function of a random variable X. Prove from
first principles that the map

t 7→ ϕXt
(u)

is continuous for every u ∈ R if X = (Xt : t > 0) is a Lévy process.

c) Again, from first principles, show that if X is a Lévy process, then

ϕXt
(u) = etη(u)

for some function η = η(u).

[Hint: You may use the fact that, for a continuous function f : R → C, the

requirements f(0) = 1 and f(s + t) = f(t)f(s) uniquely characterize the exponential

function.]

d) Construct a Lévy process X that has

ϕXt
(u) = e2t(cos u−1).

Describe the sample paths of this process.
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Let B = (Bt : t > 0) be a standard Brownian motion on R.

a) Determine functions α(t), β(t), and γ(t) such that the processes

X = (B3
t + α(t)Bt : t > 0)

and
Y = (B4

t + β(t)B2
t + γ(t) : t > 0)

are martingales.

b) For x > 0 and B = (Bt : t > 0) a standard Brownian motion on R, set

τx = inf{t > 0: Bt /∈ (−x, x)}.

Compute
E[τx] and E[τ2x ].

Also, for λ > 0, determine the function

E[e−λτx ].

4

Let X = (Xt : t > 0) and Y = (Yt : t > 0) be stochastic processes in continuous
time.

a) What does it mean to say that Y is a version of X? What does it mean to say
that X and Y are indistinguishable?

Suppose Y is a version of the process X. Show by example that X and Y need not
be indistinguishable.

b) Suppose Y is a version of X. Prove that if X and Y have the additional property
that their sample paths are cadlag almost surely, then X and Y are indistinguishable.

c) State the definition of a progressively measurable process. Prove that if X is a
cadlag adapted process, then X is progressively measurable.

d) Let X be a cadlag adapted process, and let τ be a stopping time. Prove that the
stopped process Xτ is adapted.
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Let (Xk)
∞

k=1 be a sequence of independent and identically distributed random
variables with zero mean and unit variance, and define

Sn =

n
∑

k=1

Xk, n = 1, 2, 3, . . .

a) Formulate Skorokhod’s embedding theorem for random walks, as well as Donsker’s
invariance principle.

b) Prove that the law of

1

n3/2

n
∑

k=1

Sk

converges weakly to that of the random variable

∫ 1

0
Btdt,

where B = (Bt : t > 0) is a standard Brownian motion on R.
[Hint: The sums

∑n
k=1 Sk/n

3/2 approximate a certain continuous operation on the space

C[0, 1]. ]
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Let B = (Bt : t > 0) be a standard Brownian motion.

a) Show that, almost surely,

lim sup
t→∞

Bt√
t
= ∞.

b) Prove that, almost surely,

lim sup
t→∞

Bt√
2t log log t

6 1.

[Hint: Set Φ(t) = (2t log log t)1/2 and consider events of the form

{

sup
06t6an

Bt > (1 + ǫ)Φ(an)

}

.

Note that Φ(t)/t is a decreasing function. You may find the tail bound

P(X > x) 6 e−x2/2

for N (0, 1)-random variables useful.]
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