

MATHEMATICAL TRIPOS Part III

Thursday, 30 May, 2013 9:00 am to 12:00 pm

PAPER 24

ADVANCED PROBABILITY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

a) State the almost sure martingale convergence theorem.

Give an example of a martingale that satisfies the hypotheses of the almost sure martingale convergence theorem, but fails to converge in L^1 .

 $\mathbf{2}$

b) Let $X = (X_n : n \ge 1)$ be a zero mean martingale in L^2 . Show that, for $\lambda > 0$,

$$\mathbb{P}\left(\max_{1\leqslant k\leqslant n} X_k \geqslant \lambda\right) \leqslant \frac{\mathbb{E}[X_n^2]}{\lambda^2 + \mathbb{E}[X_n^2]}.$$

[*Hint:* The function $x \mapsto (x+c)^2$ is convex.]

 $\mathbf{2}$

a) State the definition of a Lévy process.

b) Let φ_X denote the characteristic function of a random variable X. Prove from first principles that the map

$$t \mapsto \varphi_{X_t}(u)$$

is continuous for every $u \in \mathbb{R}$ if $X = (X_t : t \ge 0)$ is a Lévy process.

c) Again, from first principles, show that if X is a Lévy process, then

$$\varphi_{X_t}(u) = e^{t\eta(u)}$$

for some function $\eta = \eta(u)$.

[Hint: You may use the fact that, for a continuous function $f: \mathbb{R} \to \mathbb{C}$, the requirements f(0) = 1 and f(s + t) = f(t)f(s) uniquely characterize the exponential function.]

d) Construct a Lévy process X that has

$$\varphi_{X_t}(u) = e^{2t(\cos u - 1)}.$$

Describe the sample paths of this process.

3

Let $B = (B_t : t \ge 0)$ be a standard Brownian motion on \mathbb{R} .

a) Determine functions $\alpha(t)$, $\beta(t)$, and $\gamma(t)$ such that the processes

 $X = (B_t^3 + \alpha(t)B_t \colon t \ge 0)$

and

$$Y = (B_t^4 + \beta(t)B_t^2 + \gamma(t) \colon t \ge 0)$$

are martingales.

b) For x > 0 and $B = (B_t : t \ge 0)$ a standard Brownian motion on \mathbb{R} , set

 $\tau_x = \inf\{t \ge 0 \colon B_t \notin (-x, x)\}.$

Compute

$$\mathbb{E}[\tau_x]$$
 and $\mathbb{E}[\tau_x^2]$.

Also, for $\lambda > 0$, determine the function

 $\mathbb{E}[e^{-\lambda \tau_x}].$

$\mathbf{4}$

Let $X = (X_t : t \ge 0)$ and $Y = (Y_t : t \ge 0)$ be stochastic processes in continuous time.

a) What does it mean to say that Y is a version of X? What does it mean to say that X and Y are indistinguishable?

Suppose Y is a version of the process X. Show by example that X and Y need not be indistinguishable.

b) Suppose Y is a version of X. Prove that if X and Y have the additional property that their sample paths are cadlag almost surely, then X and Y are indistinguishable.

c) State the definition of a progressively measurable process. Prove that if X is a cadlag adapted process, then X is progressively measurable.

d) Let X be a cadlag adapted process, and let τ be a stopping time. Prove that the stopped process X^{τ} is adapted.

 $\mathbf{5}$

Let $(X_k)_{k=1}^{\infty}$ be a sequence of independent and identically distributed random variables with zero mean and unit variance, and define

$$S_n = \sum_{k=1}^n X_k, \quad n = 1, 2, 3, \dots$$

a) Formulate Skorokhod's embedding theorem for random walks, as well as Donsker's invariance principle.

b) Prove that the law of

$$\frac{1}{n^{3/2}} \sum_{k=1}^{n} S_k$$

converges weakly to that of the random variable

$$\int_0^1 B_t dt,$$

where $B = (B_t: t \ge 0)$ is a standard Brownian motion on \mathbb{R} . [*Hint: The sums* $\sum_{k=1}^n S_k/n^{3/2}$ approximate a certain continuous operation on the space C[0,1].]

6

Let $B = (B_t : t \ge 0)$ be a standard Brownian motion.

a) Show that, almost surely,

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{t}} = \infty$$

b) Prove that, almost surely,

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}} \leqslant 1.$$

[Hint: Set $\Phi(t) = (2t \log \log t)^{1/2}$ and consider events of the form

$$\left\{\sup_{0\leqslant t\leqslant a^n}B_t\geqslant (1+\epsilon)\Phi(a^n)\right\}.$$

Note that $\Phi(t)/t$ is a decreasing function. You may find the tail bound

 $\mathbb{P}(X > x) \leqslant e^{-x^2/2}$

for $\mathcal{N}(0, 1)$ -random variables useful.]

END OF PAPER