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1

(a) Let p > 3 be a prime and E/Fp an elliptic curve with Weierstrass equation
y2 = f(x). Find, with proof, a non-zero differential on E that is invariant under all
translation maps. Assuming that

deg(φ+ ψ) + deg(φ− ψ) = 2deg φ+ 2degψ

for all φ,ψ ∈ End(E), show that E(Fp)[ℓ] ∼= (Z/ℓZ)2 for all primes ℓ 6= p, and that
E(Fp) ∼= Z/mZ× Z/nZ for some integers m and n.

(b) Let E/F3 be the elliptic curve y2 = x3 + x2 + 2 and φ : E → E the isogeny

(x, y) 7→

(
x3 + x+ 2

(x− 1)2
,
(x3 + 2x+ 1)y

(x− 1)3

)
.

What is the degree of φ? For which integers m and n is mφ+ nφ̂ separable?

[General facts about morphisms between smooth projective curves may be quoted without
proof. You are not required to check that the map φ in (b) is an isogeny.]

2

What is a formal group over a ring R? Show that if F is a formal group over Z then
F(pZp) ∼= (Zp,+) for all odd primes p. What can be proved by the same methods when
p = 2? Find examples of formal groups F and G over Z with F(2Z2) 6∼= G(2Z2).

3

(a) Explain what it means for an elliptic curve E/Q to have good reduction at a
prime p. Determine the set of primes of good reduction in the case E/Q has equation
y2 = x3 + 152.

(b) The elliptic curve E/Q in (a) has rational points P1 = (0, 15), P2 = (−6,−3),
P3 = (4, 17). Compute 2P1 and P1+P2. Show that Ẽ(F7) is not cyclic, and find its order.
Deduce that if P ∈ E(Q) then 6P does not have integral co-ordinates.

(c) State and prove the Lutz–Nagell theorem. Determine which of the points P1,
P2, P3 in (b) have infinite order.

[You may quote any results you need about formal groups. If f(x) = x3 + ax + b then
y2 = f(x) has discriminant −16(4a3 + 27b2) and

(3x2 + 4a)f ′(x)2 − 27(x3 + ax− b)f(x) = 4a3 + 27b2.]
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Write an essay on Kummer theory and the weak Mordell–Weil theorem.

5

Let E/Q be an elliptic curve with a rational 2-torsion point. Explain a procedure
that often allows one to compute the rank of E(Q). Illustrate by showing that the primes
p ≡ 3 (mod 8) are not congruent numbers.
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