

MATHEMATICAL TRIPOS Part III

Thursday, 6 June, 2013 1:30 pm to 4:30 pm

PAPER 22

ELLIPTIC CURVES

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(a) Let $p \ge 3$ be a prime and E/\mathbb{F}_p an elliptic curve with Weierstrass equation $y^2 = f(x)$. Find, with proof, a non-zero differential on E that is invariant under all translation maps. Assuming that

 $\mathbf{2}$

$$\deg(\phi + \psi) + \deg(\phi - \psi) = 2\deg\phi + 2\deg\psi$$

for all $\phi, \psi \in \text{End}(E)$, show that $E(\overline{\mathbb{F}}_p)[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^2$ for all primes $\ell \neq p$, and that $E(\mathbb{F}_p) \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ for some integers m and n.

(b) Let E/\mathbb{F}_3 be the elliptic curve $y^2 = x^3 + x^2 + 2$ and $\phi: E \to E$ the isogeny

$$(x,y) \mapsto \left(\frac{x^3 + x + 2}{(x-1)^2}, \frac{(x^3 + 2x + 1)y}{(x-1)^3}\right).$$

What is the degree of ϕ ? For which integers m and n is $m\phi + n\hat{\phi}$ separable?

[General facts about morphisms between smooth projective curves may be quoted without proof. You are not required to check that the map ϕ in (b) is an isogeny.]

$\mathbf{2}$

What is a formal group over a ring R? Show that if \mathcal{F} is a formal group over \mathbb{Z} then $\mathcal{F}(p\mathbb{Z}_p) \cong (\mathbb{Z}_p, +)$ for all odd primes p. What can be proved by the same methods when p = 2? Find examples of formal groups \mathcal{F} and \mathcal{G} over \mathbb{Z} with $\mathcal{F}(2\mathbb{Z}_2) \cong \mathcal{G}(2\mathbb{Z}_2)$.

3

(a) Explain what it means for an elliptic curve E/\mathbb{Q} to have good reduction at a prime p. Determine the set of primes of good reduction in the case E/\mathbb{Q} has equation $y^2 = x^3 + 15^2$.

(b) The elliptic curve E/\mathbb{Q} in (a) has rational points $P_1 = (0, 15)$, $P_2 = (-6, -3)$, $P_3 = (4, 17)$. Compute $2P_1$ and $P_1 + P_2$. Show that $\widetilde{E}(\mathbb{F}_7)$ is not cyclic, and find its order. Deduce that if $P \in E(\mathbb{Q})$ then 6P does not have integral co-ordinates.

(c) State and prove the Lutz–Nagell theorem. Determine which of the points P_1 , P_2 , P_3 in (b) have infinite order.

[You may quote any results you need about formal groups. If $f(x) = x^3 + ax + b$ then $y^2 = f(x)$ has discriminant $-16(4a^3 + 27b^2)$ and

$$(3x^{2} + 4a)f'(x)^{2} - 27(x^{3} + ax - b)f(x) = 4a^{3} + 27b^{2}.$$

UNIVERSITY OF

 $\mathbf{4}$

Write an essay on Kummer theory and the weak Mordell–Weil theorem.

 $\mathbf{5}$

Let E/\mathbb{Q} be an elliptic curve with a rational 2-torsion point. Explain a procedure that often allows one to compute the rank of $E(\mathbb{Q})$. Illustrate by showing that the primes $p \equiv 3 \pmod{8}$ are not congruent numbers.

END OF PAPER