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1

What is a regular expression? State and prove Kleene’s theorem that the set of
strings accepted by a deterministic finite state machine is captured by a regular expression.

What does it mean for a nondeterministic machine to accept a string? Is there a
version of Kleene’s theorem for nondeterministic finite state machines?

2

(i) Let M be a machine that halts on all inputs. Is there a computable function f

such that f(n) bounds the time taken by M to halt on input n? Suppose the function
computed by M is not total . . . what then?

(ii) State and prove the Extended Omitting Types theorem for Propositional Logic.

3

Give a direct definition of the factorial function IN→IN in the language of ordered
rings. Give an estimate of the length of your formula.

4

What is a typed λ-term? Explain the connection with constructive propositional
logic. What is a Church numeral? Supply λ-terms for successor, addition, multiplication
and exponentiation on Church numerals. What is the Y combinator? Sketch how it can
be used to find a λ term for every computable function.

5

A transversal for a family X of pairwise disjoint subsets of a set X is a subset X ′

of X s.t. |X ′ ∩ x| = 1 for all x ∈ X .

Let ∼ be an equivalence relation on IN, with infinitely many equivalence classes,
whose complement is semidecidable (considered as a subset of IN× IN). Show that there
is a semidecidable transversal on the set of ∼-equivalence classes.
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6

State and prove Kruskal’s theorem on wellquasiordering finite trees.

Suppose we quasiorder finite trees as follows: T 6 T ′ if there is an injection from
the vertex set of T to the vertex set of T ′ that preserves the root and preserves adjacency.
Is this a WQO?
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