

MATHEMATICAL TRIPOS Part III

Tuesday, 4 June, 2013 $\,$ 9:00 am to 12:00 pm

PAPER 18

CATEGORY THEORY

Attempt no more than **FIVE** questions. There are **EIGHT** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

Let \mathcal{C} be a locally small category.

- (a) Define the Yoneda embedding $Y: \mathcal{C}^{\mathrm{op}} \to [\mathcal{C}, \mathrm{Set}]$. State and prove the Yoneda Lemma. State the properties of the Yoneda embedding which follow from the Yoneda Lemma.
- (b) Define a representation (A, x) of a functor $F: \mathcal{C} \to \text{Set.}$ Prove that representations are unique up to unique isomorphism.

$\mathbf{2}$

(a) Define the terms monomorphism, epimorphism, strong monomorphism and regular monomorphism. Show that a regular monomorphism is indeed a monomorphism.

A morphism $f: A \to B$ is called a **strict monomorphism** if every morphism $g: C \to B$ satisfying $(hf = kf \Rightarrow hg = kg)$ factors uniquely through f. Prove that every regular monomorphism is strict and that every strict monomorphism is strong.

(b) Define a split coequaliser diagram and prove that it is indeed a coequaliser. Recall that e: E → E is **idempotent** if ee = e, and that an idempotent **splits** if it can be factored as e = fg where gf is an identity morphism. Prove that an idempotent e splits if and only if the pair (e, 1_E) has a coequaliser.

3

Throughout this question, let \mathcal{C} be a locally small and complete category.

- (a) Define what it means for a functor $F: \mathcal{C} \to \mathcal{D}$ to preserve, reflect or create limits of shape \mathcal{J} . Prove that representable functors $\mathcal{C}(A, -): \mathcal{C} \to \text{Set}$ preserve all small limits.
- (b) Now let \mathcal{D} be any category. Prove that the functor category $[\mathcal{D}, \mathcal{C}]$ has all small limits and that the forgetful functor $U: [\mathcal{D}, \mathcal{C}] \to \mathcal{C}^{\mathrm{ob}\mathcal{D}}$ creates them.

[You are expected to show that what you claim to be a limit in $[\mathcal{D}, \mathcal{C}]$ really is a limit.]

 $\mathbf{4}$

Let \mathcal{C} and \mathcal{D} be categories.

- (a) Define what it means for two functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ to be *adjoint*. Given an adjunction $F \dashv G$, define the *unit* η and the *counit* ϵ of the adjunction. State how the unit and counit determine the correspondence of the adjunction. Prove that η is a natural transformation. State and prove the triangular identities for η and ϵ .
- (b) Prove that, given functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ and natural transformations $\eta: 1_{\mathcal{C}} \to GF$ and $\epsilon: FG \to 1_{\mathcal{D}}$ satisfying the triangular identities, there is a unique adjunction between F and G with unit η and counit ϵ .
- (c) Let C be a small category. Show that the functor × C: Cat → Cat is left adjoint to [C, -]: Cat → Cat. What are the unit and counit of this adjunction?
 [In this part of the question, you are not expected to check details such as well-definedness or the naturality of the bijection.]

 $\mathbf{5}$

Consider a functor $G: \mathcal{C} \to \text{Set}$ with \mathcal{C} locally small and complete.

- (a) Define, for each object $X \in \text{Set}$, the category $(X \downarrow G)$.
- (b) Show that G is representable if and only if $(1 \downarrow G)$ has an initial object.
- (c) Show that a complete, locally small category has an initial object if and only if it has a weakly initial set.
- (d) Deduce that $G: \mathcal{C} \to \text{Set}$ is representable if and only if it preserves limits and $(1 \downarrow G)$ has a weakly initial set.

[You may assume results about limits in $(X \downarrow G)$, provided they are stated clearly. You may also assume that representable functors preserve limits.]

UNIVERSITY OF

6

Let $\mathbb{T} = (T: \mathcal{C} \to \mathcal{C}, \eta: 1_{\mathcal{C}} \to T, \mu: TT \to T)$ be a monad on the category \mathcal{C} .

- (a) Define the category of algebras $\mathcal{C}^{\mathbb{T}}$ and a free \mathbb{T} -algebra on an object A of \mathcal{C} . Prove carefully that the Eilenberg-Moore adjunction $F^{\mathbb{T}} \dashv G^{\mathbb{T}}$ is terminal in the category of adjunctions inducing the monad \mathbb{T} .
- (b) Let $\mathcal{C} \xrightarrow[G]{\perp} \mathcal{D}$ be an adjunction inducing \mathbb{T} . Prove that the comparison functor $K: \mathcal{D} \to \mathcal{C}^{\mathbb{T}}$ is full and faithful when the standard free presentation

$$FGFGB \xrightarrow{FG\epsilon_B} FGB \xrightarrow{\epsilon_B} B$$

is a coequaliser for all objects B in \mathcal{D} .

[You may assume any standard results from the course, provided they are clearly stated.]

 $\mathbf{7}$

State and prove the Crude Monadicity Theorem.

[You may use any standard results from the course, provided they are clearly stated.]

UNIVERSITY OF

8

Let \mathcal{A} be an abelian category.

(a) Given a commutative diagram in \mathcal{A}

$$K \xrightarrow{f} A \xrightarrow{g} B$$

$$k \downarrow (1) \qquad \downarrow a \quad (2) \qquad \downarrow b$$

$$K' \xrightarrow{f'} A' \xrightarrow{g'} B'$$

with $f = \ker g$ and $f' = \ker g'$, prove that if b is a monomorphism then the square (1) is a pullback. Prove also that if the square (2) is a pullback, then k is an isomorphism.

(b) Define the image factorisation of a morphism $f: A \to B$ in \mathcal{A} and prove that it is unique (up to isomorphism) and functorial (i.e. prove that image factorisation gives rise to a functor $I: \operatorname{Arr} \mathcal{A} \to \mathcal{A}$ from the arrow-category on \mathcal{A} to \mathcal{A}). Prove also that image factorisation is stable under pullback: Given a diagram

where both squares are pullbacks, prove that if the bottom row is the image factorisation of its composite f = ip then the top row is the image factorisation of the pullback of f along b.

[You may use any standard results about pullbacks, provided they are stated clearly.]

END OF PAPER