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1

Let C be a locally small category.

(a) Define the Yoneda embedding Y : Cop → [C,Set]. State and prove the Yoneda
Lemma. State the properties of the Yoneda embedding which follow from the
Yoneda Lemma.

(b) Define a representation (A, x) of a functor F : C → Set. Prove that representations
are unique up to unique isomorphism.

2

(a) Define the terms monomorphism, epimorphism, strong monomorphism and regular

monomorphism. Show that a regular monomorphism is indeed a monomorphism.

A morphism f : A → B is called a strict monomorphism if every morphism
g : C → B satisfying (hf = kf ⇒ hg = kg) factors uniquely through f . Prove
that every regular monomorphism is strict and that every strict monomorphism is
strong.

(b) Define a split coequaliser diagram and prove that it is indeed a coequaliser. Recall
that e : E → E is idempotent if ee = e, and that an idempotent splits if it can be
factored as e = fg where gf is an identity morphism. Prove that an idempotent e
splits if and only if the pair (e, 1E) has a coequaliser.

3

Throughout this question, let C be a locally small and complete category.

(a) Define what it means for a functor F : C → D to preserve, reflect or create limits
of shape J . Prove that representable functors C(A,−) : C → Set preserve all small
limits.

(b) Now let D be any category. Prove that the functor category [D, C] has all small
limits and that the forgetful functor U : [D, C] → CobD creates them.

[You are expected to show that what you claim to be a limit in [D, C] really is a
limit.]
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4

Let C and D be categories.

(a) Define what it means for two functors F : C → D and G : D → C to be adjoint. Given
an adjunction F ⊣ G, define the unit η and the counit ǫ of the adjunction. State
how the unit and counit determine the correspondence of the adjunction. Prove
that η is a natural transformation. State and prove the triangular identities for η

and ǫ.

(b) Prove that, given functors F : C → D and G : D → C and natural transformations
η : 1C → GF and ǫ : FG → 1D satisfying the triangular identities, there is a unique
adjunction between F and G with unit η and counit ǫ.

(c) Let C be a small category. Show that the functor −× C : Cat → Cat is left adjoint
to [C,−] : Cat → Cat. What are the unit and counit of this adjunction?

[In this part of the question, you are not expected to check details such as well-
definedness or the naturality of the bijection.]

5

Consider a functor G : C → Set with C locally small and complete.

(a) Define, for each object X ∈ Set, the category (X ↓ G).

(b) Show that G is representable if and only if (1 ↓ G) has an initial object.

(c) Show that a complete, locally small category has an initial object if and only if it
has a weakly initial set.

(d) Deduce that G : C → Set is representable if and only if it preserves limits and (1 ↓ G)
has a weakly initial set.

[You may assume results about limits in (X ↓ G), provided they are stated clearly. You
may also assume that representable functors preserve limits.]
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6

Let T = (T : C → C, η : 1C → T , µ : TT → T ) be a monad on the category C.

(a) Define the category of algebras CT and a free T-algebra on an object A of C.

Prove carefully that the Eilenberg–Moore adjunction FT ⊣ GT is terminal in the
category of adjunctions inducing the monad T.

(b) Let C
F //
⊥ D
G

oo be an adjunction inducing T. Prove that the comparison functor

K : D → CT is full and faithful when the standard free presentation

FGFGB
FGǫB //

ǫFGB

// FGB
ǫB // B

is a coequaliser for all objects B in D.

[You may assume any standard results from the course, provided they are clearly
stated.]

7

State and prove the Crude Monadicity Theorem.

[You may use any standard results from the course, provided they are clearly stated.]
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8

Let A be an abelian category.

(a) Given a commutative diagram in A

K
f

//

k
��

(1)

A
g

//

a

��

(2)

B

b
��

K ′

f ′

// A′

g′
// B′

with f = ker g and f ′ = ker g′, prove that if b is a monomorphism then the square
(1) is a pullback. Prove also that if the square (2) is a pullback, then k is an
isomorphism.

(b) Define the image factorisation of a morphism f : A → B in A and prove that it is
unique (up to isomorphism) and functorial (i.e. prove that image factorisation gives
rise to a functor I : ArrA → A from the arrow-category on A to A). Prove also that
image factorisation is stable under pullback: Given a diagram

A′
p′

//

��

I ′
i′ //

��

B′

b

��

A p
// I

i
// B

where both squares are pullbacks, prove that if the bottom row is the image
factorisation of its composite f = ip then the top row is the image factorisation
of the pullback of f along b.

[You may use any standard results about pullbacks, provided they are stated clearly.]
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