

MATHEMATICAL TRIPOS Part III

Thursday, 6 June, 2013 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 17

COMPLEX MANIFOLDS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Given a codimension one closed complex submanifold V of a complex manifold M, describe the corresponding holomorphic line bundle [V], and justify the fact that it is well-defined up to isomorphism, i.e. independent of any choices you may have made. [Throughout this question, the standard bijection between (isomorphism classes of) holomorphic line bundles on M and invertible \mathcal{O}_M -modules may be assumed without proof.]

2

Define the canonical line bundle K_M on a complex manifold M; when $M = \mathbf{P}^n(\mathbf{C})$, find an expression for K_M in terms of the hyperplane bundle [H].

Let $\phi : X \to Y$ be a holomorphic map of complex manifolds and $\pi : L \to Y$ be a holomorphic line bundle on Y. For $U \subset X$ open, we define $\mathcal{F}(U)$ to be the set of holomorphic maps $\theta : U \to L$ such that $\pi \circ \theta = \phi|_U$; show that this determines an invertible \mathcal{O}_X -module \mathcal{F} . We denote the corresponding holomorphic line bundle on X by ϕ^*L .

Suppose x_1, \ldots, x_n denote the standard coordinates on \mathbb{C}^n , and consider the projective space $\mathbb{P}^{n-1}(\mathbb{C})$, with homogeneous coordinates Y_1, \ldots, Y_n . Let $X \subset \mathbb{C}^n \times \mathbb{P}^{n-1}(\mathbb{C})$ be the subset defined by the equations $x_i Y_j = x_j Y_i$ for all $1 \leq i, j \leq n$. Show that X is a complex manifold. If π_1 denotes the projection map of X to \mathbb{C}^n , show that $\pi_1^{-1}(0)$ is a submanifold E of X biholomorphic to $\mathbb{P}^{n-1}(\mathbb{C})$, and that the restriction of π_1 to $X \setminus E$ is a biholomorphism to $\mathbb{C}^n \setminus \{\mathbf{0}\}$. Prove that $K_X \cong [E]^{\otimes (n-1)}$.

For any complex manifold M of dimension n and point $P \in M$, sketch briefly how, using the above construction, you would construct a complex manifold \tilde{M} and a holomorphic map $\phi : \tilde{M} \to M$, with $E := \phi^{-1}(P)$ a submanifold biholomorphic to $\mathbf{P}^{n-1}(\mathbf{C})$ and $\phi : \tilde{M} \setminus \phi^{-1}(P) \to M \setminus \{P\}$ a biholomorphic map (you need not show that your construction is independent of the choices that you may have made). Prove that

$$K_{\tilde{M}} \cong \phi^* K_M \otimes [E]^{\otimes (n-1)}.$$

CAMBRIDGE

 $\mathbf{2}$

Define what is meant by a connection D on a complex vector bundle E over a smooth manifold M, and show that connections on E always exist. What is the *curvature* Θ_D associated to the connection? State and prove Cartan's equation for the corresponding curvature matrix Θ (with respect to a given local frame for E). Explain how one obtains a globally defined closed 2-form Tr Θ_D from the curvature.

If E has rank r and D is a connection on E, show that there is a naturally defined associated connection $D^{(r)}$ on $\bigwedge^r E$, whose curvature 2-form is just Tr Θ_D . Justify briefly (omitting details) why the De Rham cohomology class determined by Tr Θ_D is independent of the connection.

Suppose now that M is a complex manifold and that E is a holomorphic vector bundle over M, equipped with a hermitian metric. If $h = (h_{ij})$ is the hermitian matrix defined by $h_{ij} := (e_i, e_j)$ for some local holomorphic frame e_1, \ldots, e_r for E, we define a matrix of 2-forms locally by

$$(\bar{\partial}\partial h).h^{-1} + (\partial h).h^{-1} \wedge (\bar{\partial}h).h^{-1},$$

where dot here denotes matrix multiplication and wedge denotes the product of matrices of 1-forms. Show that the trace of the above matrix is an exact local 2-form independent of the choice of holomorphic frame, and hence defines a global closed 2-form α . Why is the De Rham cohomology class of α independent of the choice of metric? Justify your answer.

3

Explain what is meant by a *Hodge metric* on a compact complex manifold. Show that a complex torus admits a Hodge metric if and only if it admits an *invariant* one — here, you should explain what is meant by the word *invariant* in this context.

Given a lattice Λ in \mathbb{C}^n and a choice of basis $\lambda_1, \ldots, \lambda_{2n}$ for Λ , we can take the standard basis e_1, \ldots, e_n for \mathbb{C}^n and define the *period matrix* $\Omega = (\omega_{\alpha i})$ to be the $n \times 2n$ matrix such that $\lambda_i = \sum_{\alpha=1}^n \omega_{\alpha i} e_{\alpha}$. Prove that the complex torus $M = \mathbb{C}^n / \Lambda$ admits a Hodge metric if and only if there exists an integral skew-symmetric matrix Q satisfying $\Omega Q^{-1} \Omega^t = 0$ and $-i\Omega Q^{-1} \overline{\Omega}^t$ is a positive-definite (hermitian) matrix.

Suppose now $\Lambda \subset \mathbf{C}^2$ is a lattice with period matrix $\Omega = (\mathbf{I}_2, iA)$, where \mathbf{I}_2 denotes the 2 × 2 identity matrix and $A = \begin{pmatrix} 1 & -\sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$. Prove that $M = \mathbf{C}^2/\Lambda$ does not admit any Hodge metric.

CAMBRIDGE

 $\mathbf{4}$

For M a complex manifold of dimension n equipped with a hermitian metric, let ω denote the associated (1, 1)-form. Give the defining property of the Hodge *-operator

4

$$*: \mathcal{A}^{p,q}_M
ightarrow \mathcal{A}^{n-p,n-q}_M$$

For $\psi \in \mathcal{Q}_{M}^{p,q}(U)$, state a formula for $* * \psi$. Let $L : \mathcal{Q}_{M}^{p,q} \to \mathcal{Q}_{M}^{p+1,q+1}$ denote the operator given by $L(\eta) = \omega \wedge \eta$; define the formal adjoint $\Lambda = L^{*} : \mathcal{Q}_{M}^{p,q} \to \mathcal{Q}_{M}^{p-1,q-1}$. When M is compact, show that L and Λ are adjoint operators when acting on global forms (with induced inner-product).

Assuming the result that the commutator $[L, \Lambda]$ acts via multiplication by k - n on \mathcal{A}_M^k , prove by induction that for $r \ge 1$, $[L^r, \Lambda] = \{r(k-n) + r(r-1)\}L^{r-1}$ as operators on \mathcal{A}_M^k . Deduce by induction on r + k that if r, k are non-negative integers with $r + k \le n$, then $L^r : \mathcal{A}_M^k \to \mathcal{A}_M^{k+2r}$ is an injective morphism of sheaves. [Hint: Prove the result first for k = 0, 1. For k > 1, under an appropriate inductive hypothesis show that, for any $\psi \in \mathcal{A}_m^k(U)$ with $L^r\psi = 0$, we can write $\psi = L\alpha$ for some $\alpha \in \mathcal{A}_m^{k-2}(U)$ with $L^{r+1}\alpha = 0$.]

In the case when M is a Kähler manifold, state the Hodge identities for $[\Lambda, \bar{\partial}]$ and $[\Lambda, \partial]$; deduce corresponding identities for $[L, \bar{\partial}^*]$ and $[L, \partial^*]$. Deduce also identities between the various Laplacians Δ_d , Δ_∂ and $\Delta_{\bar{\partial}}$ on M. In this case, show that the Laplacians commute with L.

For M is a compact Kähler manifold, explain briefly why the Hodge decomposition theorem for global forms implies that the Dolbeault cohomology group $H^{p,q}_{\bar{\partial}}(M)$ is isomorphic to the space $\mathcal{H}^{p,q}(M)$ of harmonic (p,q)-forms. If $h^{p,q}$ denotes the complex dimension of $H^{p,q}_{\bar{\partial}}(M)$, prove that $h^{p,q} = h^{q,p}$ and $h^{p,q} = h^{n-p,n-q}$. Deduce that $L^{n-(p+q)}$ induces an isomorphism between Dolbeault cohomology groups $H^{p,q}_{\bar{\partial}}(M) \to H^{n-q,n-p}_{\bar{\partial}}(M)$.

END OF PAPER