

MATHEMATICAL TRIPOS Part III

Wednesday, 5 June, 2013 9:00 am to 12:00 pm

PAPER 15

DIFFERENTIAL GEOMETRY

You may attempt **ALL** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

State the definition of smooth manifold.

Give an example (with justifications!) of a connected, second countable, paracompact, Hausdorff topological space X that does *not* admit the structure of a smooth manifold.

Given two smooth manifolds \mathcal{M} and \mathcal{N} , show that their topological product $\mathcal{M} \times \mathcal{N}$ admits a natural smooth manifold structure.

Let \mathcal{M} be a manifold and $x \in \mathcal{M}$. State the definition of tangent space $T_x\mathcal{M}$ at x, and show that $T_x\mathcal{M}$ is a vector space of dimension the dimension of \mathcal{M} . Show that a smooth map $f : \mathcal{M} \to \mathcal{N}$ of manifolds gives rise to a map $(f_*)_x : T_x\mathcal{M} \to T_{f(x)}\mathcal{N}$ known as the push forward (or differential map).

With the notation of above, suppose now in addition that \mathcal{M} is connected and $(f_*)_x = 0$ for all x. Show that f is a constant map.

$\mathbf{2}$

State the definition of *Riemannian metric*. Show that a Riemannian metric on a smooth manifold \mathcal{M} defines a bundle isomorphism between the tangent and cotangent bundles.

Show that given any Riemannian manifold (\mathcal{M}, g) , a point $p \in \mathcal{M}$, and a non-empty open neighbourhood \mathcal{U} with $p \in \mathcal{U}$, then there exists a second Riemannian metric \tilde{g} on \mathcal{M} such that $\tilde{g} = g$ in $\mathcal{M} \setminus \mathcal{U}$ and such that (\mathcal{M}, \tilde{g}) is locally isometric to Euclidean space in some neighbourhood of p.

State what it means for a Riemannian manifold to be geodesically complete.

Let \mathcal{M} be a manifold such that $\mathcal{M} \setminus X$ is diffeomorphic to $\mathbb{R}^n \setminus B$ where B is the closed ball of radius 1, for some *compact* subset $X \subset \mathcal{M}$. Let g be a Riemannian metric on \mathcal{M} , such that with respect to the local co-ordinates x^i induced on $\mathcal{M} \setminus X$ from the standard coordinates of $\mathbb{R}^n \setminus B$, $g_{ij} = e_{ij}$ outside some sufficiently large closed ball, where $e_{ij} = 1$ if i = j and 0 otherwise. Show that (\mathcal{M}, g) is geodesically complete.

Now let \mathcal{M} be a smooth manifold, and g and \tilde{g} be two metrics on \mathcal{M} such that $\tilde{g}(v,v) \ge g(v,v)$ for all vectors $v \in T\mathcal{M}$. Show that if g is geodesically complete, so is \tilde{g} .

CAMBRIDGE

3

Let (\mathcal{M}, g) be a Riemannian manifold. Show that there exists a unique connection ∇ in $T\mathcal{M}$ (the so-called *Levi-Civita* connection) such that

3

$$Xg(Y,Z) = g(\nabla_X Y,Z) + g(Y,\nabla_X Z)$$

 $\nabla_X Y - \nabla_Y X = [X, Y].$

Give an expression for ∇ in local coordinates in terms of g.

Let \mathcal{M} be connected and g, \tilde{g} denote two Riemannian metrics on \mathcal{M} such that

$$\nabla = \widetilde{\nabla}$$

as maps:

$$T\mathcal{M} \times \Gamma(T\mathcal{M}) \to \Gamma(T\mathcal{M}),$$

where ∇ , $\widetilde{\nabla}$ denote the Levi-Civita connection of g, \tilde{g} respectively. Suppose, moreover, that $g|_x = \tilde{g}|_x$ at some $x \in \mathcal{M}$. Show that $g = \tilde{g}$.

What if one drops the assumption $g|_x = \tilde{g}|_x$?

 $\mathbf{4}$

Let (\mathcal{M}, g) be a Riemannian manifold. Define the *Riemann curvature tensor* and show that it indeed defines a tensor.

Define sectional and Ricci curvature.

Compute the Riemann curvature tensor of the standard unit *n*-sphere \mathbb{S}^n with its induced metric from Euclidean \mathbb{R}^{n+1} . Show that this metric on \mathbb{S}^n is *Einstein*, i.e.

 $\operatorname{Ric} = \Lambda g$

for some constant Λ which you should compute.

$\mathbf{5}$

State and prove the *Bonnet–Myers* theorem concerning complete Riemannian manifolds with Ricci curvature bounded below.

Show by explicit example that the assumption of geodesic completeness is necessary.

END OF PAPER

Part III, Paper 15