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1

Compute the integral cohomology rings of the following spaces.

1. CP
8/CP3.

2. (S2
× S2) ∪f D

3 where f : S2
→ S2

× S2 is given by f(x) = (x, x).

3. (S2
× S2)/ ∼, where (x,y) ∼ (−x,−y).

2

Suppose that (C∗, dC) and (D∗, dD) are finitely generated free chain complexes
defined over Z, and that f : C∗ → D∗ is a chain map. Let Mi = Ci−1 ⊕Di, and define
df : Mi → Mi−1 by

df (x, y) = (dCx, (−1)if(x) + dDy).

Show that (M,df ) is a chain complex, and that H∗(M) = 0 if and only if the map
f∗ : H∗(C) → H∗(D) is an isomorphism.

If f : X → Y is a map of finite cell complexes, show that if f∗ : H∗(X;Z/p) →

H∗(Y ;Z/p) is an isomorphism for each prime p, then f∗ : H∗(X;Z) → H∗(Y ;Z) is an iso-
morphism.

3

Show that any map f : CP2
→ S2

× S2 has degree 0.

If g : S2
× S2

→ CP
2 has degree n, what are the possible values of n? Construct a

map of each possible degree.

If h : S2
×S2

→ CP
2#CP

2 has degree n, what are the possible values of n? Construct
a map of each possible degree.

4

State the Thom isomorphism theorem for unoriented real vector bundles and derive
the (unoriented) Gysin sequence from it. Compute the ring structure on H∗(RPn;Z/2).
(You may assume the groups H∗(RPn;Z/2) are known.)

Now assume that E
π
−→ B is an n-dimensional oriented real vector bundle. Define

the Euler class of E. If U ∈ Hn(D(E), S(E)) is the Thom class, show that U ∪ U =
U ∪ π∗(e(E)). Deduce that if n is odd, 2e(E) = 0.
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5

Let G be a topological group (i.e. the multiplication map G × G → G and the
inverse map G → G are continuous) with identity element e. If α, β : (In, ∂In) → (G, e),
define αβ : (In, ∂In) → (G, e) by αβ(x) = α(x)β(x). Show that [αβ] = [α] + [β] in
πn(G, e).

Identifying S3 with the unit quaternions, define Φk,l : S3
× S3 by Φk,l(q1, q2) =

(qk
1
q2q

l
1
, q1). Show that Φ is a homeomorphism, and compute the induced map Φ∗ :

H∗(S
3
× S3) → H∗(S

3
× S3).

If Xk,l = S3
×D4

∪Φk,l
D4

× S3, compute H∗(Xk,l).
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