MATHEMATICAL TRIPOS Part III

Tuesday, 4 June, 2013 $\,$ 1:30 pm to 4:30 pm

PAPER 14

ALGEBRAIC TOPOLOGY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1

Compute the integral cohomology rings of the following spaces.

 $\mathbf{2}$

- 1. $\mathbb{CP}^8/\mathbb{CP}^3$.
- 2. $(S^2 \times S^2) \cup_f D^3$ where $f: S^2 \to S^2 \times S^2$ is given by f(x) = (x, x).
- 3. $(S^2 \times S^2) / \sim$, where $(\mathbf{x}, \mathbf{y}) \sim (-\mathbf{x}, -\mathbf{y})$.

 $\mathbf{2}$

Suppose that (C_*, d_C) and (D_*, d_D) are finitely generated free chain complexes defined over \mathbb{Z} , and that $f: C_* \to D_*$ is a chain map. Let $M_i = C_{i-1} \oplus D_i$, and define $d_f: M_i \to M_{i-1}$ by

$$d_f(x,y) = (d_C x, (-1)^i f(x) + d_D y).$$

Show that (M, d_f) is a chain complex, and that $H_*(M) = 0$ if and only if the map $f_*: H_*(C) \to H_*(D)$ is an isomorphism.

If $f: X \to Y$ is a map of finite cell complexes, show that if $f_*: H_*(X; \mathbb{Z}/p) \to H_*(Y; \mathbb{Z}/p)$ is an isomorphism for each prime p, then $f_*: H_*(X; \mathbb{Z}) \to H_*(Y; \mathbb{Z})$ is an isomorphism.

3

Show that any map $f : \mathbb{CP}^2 \to S^2 \times S^2$ has degree 0.

If $g: S^2 \times S^2 \to \mathbb{CP}^2$ has degree n, what are the possible values of n? Construct a map of each possible degree.

If $h: S^2 \times S^2 \to \mathbb{CP}^2 \# \mathbb{CP}^2$ has degree n, what are the possible values of n? Construct a map of each possible degree.

$\mathbf{4}$

State the Thom isomorphism theorem for unoriented real vector bundles and derive the (unoriented) Gysin sequence from it. Compute the ring structure on $H^*(\mathbb{RP}^n; \mathbb{Z}/2)$. (You may assume the groups $H^*(\mathbb{RP}^n; \mathbb{Z}/2)$ are known.)

Now assume that $E \xrightarrow{\pi} B$ is an *n*-dimensional oriented real vector bundle. Define the Euler class of E. If $U \in H^n(D(E), S(E))$ is the Thom class, show that $U \cup U = U \cup \pi^*(e(E))$. Deduce that if n is odd, 2e(E) = 0.

CAMBRIDGE

 $\mathbf{5}$

Let G be a topological group (*i.e.* the multiplication map $G \times G \to G$ and the inverse map $G \to G$ are continuous) with identity element e. If $\alpha, \beta : (I^n, \partial I^n) \to (G, e)$, define $\alpha\beta : (I^n, \partial I^n) \to (G, e)$ by $\alpha\beta(x) = \alpha(x)\beta(x)$. Show that $[\alpha\beta] = [\alpha] + [\beta]$ in $\pi_n(G, e)$.

Identifying S^3 with the unit quaternions, define $\Phi_{k,l} : S^3 \times S^3$ by $\Phi_{k,l}(q_1, q_2) = (q_1^k q_2 q_1^l, q_1)$. Show that Φ is a homeomorphism, and compute the induced map $\Phi_* : H_*(S^3 \times S^3) \to H_*(S^3 \times S^3)$.

If $X_{k,l} = S^3 \times D^4 \cup_{\Phi_{k,l}} D^4 \times S^3$, compute $H_*(X_{k,l})$.

END OF PAPER