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1

Let A and B be commutative rings, X = Spec A and Y = Spec B. Give the proof
of the theorem which states that there is a 1-1 correspondence between the set of ring
homomorphisms A → B and morphisms (Y,OY ) → (X,OX) as locally ringed spaces.
Describe Spec R[t1, t2] and the morphism Spec C[t1, t2] → Spec R[t1, t2] induced by the
homomorphism R → C (with justifications).

2

Give the definitions of an irreducible scheme, a reduced scheme, and an integral
scheme. Let A be a commutative ring. Show that A is an integral domain if and only if
Spec A is reduced and irreducible. Let X be a scheme. Show that X is integral if and only
if it is reduced and irreducible. Next, let X be an integral scheme and U a non-empty open
subscheme. Give the definitions of the generic point and the function field K of X, and
show that the natural map OX(U) → K is injective. Now, find a morphism f : X → Y of
integral schemes and a point y ∈ Y such that the fibre of f over y is neither reduced nor
irreducible.

3

Let f : X → Y be a morphism of Noetherian schemes and F a quasi-coherent sheaf
on X. Give the proof of the theorem which states that f∗F is quasi-coherent. Find an
example in which F is not coherent but f∗F is coherent. Show that there is no such
example if f is a finite morphism. Next find an example in which f is an open immersion
of integral schemes but not an isomorphism and that f∗OX is coherent.

[Give justifications for your examples.]

4

Let X be a Noetherian scheme such that the intersection of any two open affine
subschemes is again affine. Let U be an open affine subscheme, f : U → X the inclusion
morphism, and let 0 → M′ → M → M′′ → 0 be an exact sequence of quasi-coherent
sheaves on U . Show that

0 → f∗M
′ → f∗M → f∗M

′′ → 0

is also an exact sequence. Now let U = (Ui)i∈I be a finite open affine cover of X,
and F a quasi-coherent sheaf on X. Give the proof of the theorem which states that
Ȟp(U ,F) ≃ Hp(X,F) for every p.
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5

Let X = P
3

C
= Proj C[t0, . . . , t3] and W = Spec C. Calculate the cohomology

groups and the Euler characteristic of the sheaf ΩX/W .

Now let F and G be irreducible homogeneous polynomials in the ti with degF = 5
and degG = 7. Let Z be the closed subscheme of X defined by the ideal 〈F,G〉. Show
that dimC H1(Z,OZ) > 141.
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