MATHEMATICAL TRIPOS Part III

Monday, 3 June, 2013 1:30 pm to 4:30 pm

PAPER 12

EXTREMAL GRAPH THEORY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

State the Erdős–Stone theorem, giving a sufficient condition under which a graph G of order n will contain $K_{r+1}(t)$, where $t \ge \lfloor d \log n \rfloor$ and d does not depend on n. Prove the theorem.

State and prove a corresponding upper bound for t, with the same dependence on n.

Let H_k be the graph of order k obtained from a cycle of length k by adding all edges between vertices distance 2 apart on the cycle. For which values of k does the following hold: for every sequence $(G_n)_{n=1}^{\infty}$ of graphs with $|G_n| = n$ and $e(G_n) \ge 0.51 {n \choose 2}$, all but finitely many G_n contain H_k ?

$\mathbf{2}$

Define the parameter $\pi(H)$ of an ℓ -uniform hypergraph H. Show that there is a function $\delta = \delta(H, \epsilon)$ such that every ℓ -uniform hypergraph G of order n with $e(G) \ge (\pi(H) + \epsilon) \binom{n}{\ell}$ contains at least $\lfloor \delta n^{|H|} \rfloor$ copies of H.

Let G be a graph of order n and let $k_p(G)$ be the number of copies of K_p in G. Let $c \in \mathbb{R}$ and let $f(G) = k_2(G) - ck_3(G)$. Show that, amongst graphs of order n, the function f(G) takes its maximum on some complete multipartite graph.

By writing $f(G) \leq \sum_{i < k} a_{ij} - c \sum_{i < j < k} a_i a_j a_k$, where a_1, \ldots, a_q are integers and

 $\sum_{i=1}^{q} a_i = n$, show that f(G) takes its maximum on a Turán graph.

By allowing the a_i to take rational values, deduce that $f(G) \leq {\binom{q}{2}}(n/q)^2 - c{\binom{q}{3}}(n/q)^3$ holds for some integer $q \geq 2$. Hence show that $k_3(G) \geq (4n/9)(k_2(G) - n^2/4)$.

3

Let G be a graph of order n. Show that, if G is K_{r+1} -free and $e(G) \ge t_r(n) - k$, then there is a complete r-partite graph H, with V(H) = V(G) and $|E(H) \triangle E(G)| \le 3k$.

Suppose that G contains no cycle of length 2013. Prove that, for each $\epsilon > 0$, there is a number $n_0 = n_0(\epsilon)$ so that, if $n > n_0$, the following statement holds: if G contains no cycle of length 2013 and $e(G) \ge (1/2 - \epsilon) \binom{n}{2}$, then there is a complete bipartite graph H, with V(H) = V(G) and $|E(H) \triangle E(G)| \le 11 \epsilon \binom{n}{2}$.

[Szemerédi's Regularity Lemma and its standard consequences may be used without proof, provided they are clearly stated.]

Explain why the statement remains true if the condition "G contains no cycle of length 2013" is weakened to "G contains at most δn^{2013} cycles of length 2013, for some small constant δ depending on ϵ ".

UNIVERSITY OF

 $\mathbf{4}$

Let \mathcal{Q} be a monotone graph property and let \mathcal{Q}_n consist of those graphs in \mathcal{Q} having vertex set [n]. Prove that $|\mathcal{Q}_n| = 2^{(1-1/r+o(1))\binom{n}{2}}$, where $r+1 = \min\{\chi(F) : F \notin \mathcal{Q}\}$.

[Szemerédi's Regularity Lemma and its standard consequences may be used without proof, provided they are clearly stated.]

Define the properties C(a, b) and define the parameter $r(\mathcal{P})$ of a hereditary graph property \mathcal{P} . What is r(C(a, b))?

Briefly describe the main changes that must be made to your earlier proof in order to prove that $|\mathcal{P}_n| = 2^{(1-1/r+o(1))\binom{n}{2}}$, where $r = r(\mathcal{P})$.

Show that, if \mathcal{P} and \mathcal{Q} are both monotone, then $r(\mathcal{P} \cap \mathcal{Q}) = \min\{r(\mathcal{P}), r(\mathcal{Q})\}$. By considering $\mathcal{C}(2,0)$ and $\mathcal{C}(2,2)$, or otherwise, show that this equation does not hold for hereditary properties in general.

$\mathbf{5}$

Let $\prod_{i=1}^{n} A_i$ be a product of finite probability spaces. Let $f : \prod_{i=1}^{n} A_i \to \mathbb{R}$ be such that $|f(z) - f(z')| \leq c_i$ whenever z and z' differ only in the *i*th co-ordinate. Prove that $\Pr\{|f - \mathbb{E}f\| \ge t\} \leq 2\exp(-2t^2/\sum_{i=1}^{n} c_i^2)$ for each real $t \ge 0$.

Let $G \in \mathcal{G}(n,p)$ be a random graph, where p is constant. Let $\chi(G)$ be its chromatic number. Show that $\Pr\{|\chi(G) - \mathbb{E}\chi(G)| \ge \lambda \sqrt{n}\} \le 2e^{-2\lambda^2}$ for each real $\lambda \ge 0$.

Briefly outline why $\mathbb{E}\chi(G) = (1 + o(1))n/2 \log_{1/(1-p)} n$, highlighting the main points of your argument.

END OF PAPER