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1

Define the additive energy E(A,A) of a finite set A of integers. Show that if A has
small doubling constant then it has large additive energy, giving a precise statement of
this fact.

State a result in the converse direction and show how it follows from a result about
sumsets along a graph, which you should state precisely.

Suppose that Γ is a bipartite graph on vertex set V ∪ W , where |V | = m and
|W | = n, with δmn edges joining vertices in V to vertices in W . Let ǫ > 0 be a further
parameter. Show that there is a subset V ′ ⊆ V with |V ′| > δm/2 such that between at
least a proportion 1 − 2ǫ/δ2 of the ordered pairs of points (v1, v2) ∈ V ′ × V ′ there are at
least ǫn paths v1 → w → v2 of length two.

Discuss, very briefly, how this result is important in the proof of the result about
sumsets along a graph which you stated earlier.

2

Let (φ(n))n∈N be a sequence in R/Z. What does it mean for this sequence to be
equidistributed? Discuss, without proof, the link between equidistribution and exponential
sums of the form En6Ne(mφ(n)). Deduce a criterion, in terms of exponential sums like
this, for φ to be equidistributed.

Suppose that (φ(n))n∈N is not equidistributed. Show that there is an h 6= 0 such
that the sequence (∆hφ(n))n∈N is not equidistributed, where ∆hφ(n) = φ(n)− φ(n + h).

Show that (n2
√
2)n∈N is equidistributed in R/Z.

Part III, Paper 11



3

3

Define the Gowers U3(N)-norm of a function f : {1, . . . , N} → C.

What is the U3(N)-norm of the function f0(x) = e(αx2)?

Briefly discuss the connection between the Gowers U3-norm and 4-term arithmetic
progressions.

Show that if |f(x)| 6 1 for all x and if ‖f‖U3(N) > δ then there is a set

H ⊆ {−N, . . . ,N}, |H| ≫ δCN , such that the following hold:

1. If h ∈ H then there is some θ(h) ∈ R/Z such that

|Ex∈G∂hf(x)e(−θ(h)x)| ≫ δC ;

2. There are ≫ δCN3 quadruples h1, h2, h3, h4 ∈ H such that

h1 + h2 = h3 + h4

and
θ(h1) + θ(h2) = θ(h3) + θ(h4).

Give an explicit function θ(h) which satisfies this in the case f = f0. Give, without proof,
an example of a function θ satisfying condition (2) for some η > 0, but which does not agree
with any function of form θ(h) = αh+ β for more than o(N) values of h ∈ {−N, . . . ,N}.

[You may assume any form of the inverse theorem for the U2-norm you wish.]

4

Let N be a prime, and let R ⊆ Z/NZ be a set of size d. Let ǫ > 0. Define the Bohr
set B(R, ǫ), and show that it contains a nonzero element if ǫ > N−1/d. Hence show that
B(R, ǫ) contains an arithmetic progression of length at least ǫN1/d.

Suppose that A ⊆ {1, . . . , N} is a set of size 0.01N . Show there is an absolute
constant c > 0 such that the set 2A− 2A contains an arithmetic progression of length at
least N c, for N sufficiently large.

By considering random sets, or otherwise, so that the same conclusion is not
necessarily true of the set A itself.

[Any basic facts about the discrete Fourier transform, and about the distribution of
prime numbers, should be stated but need not be proven.]
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Let A be a set of integers. Suppose that |A| = N and that |A + A| 6 KN . Show
that |ℓA| 6 KℓN for every integer ℓ > 2.

State and prove the Ruzsa covering lemma. Show that for fixed K and ǫ > 0 there
there is some ℓ0 = ℓ0(K, ǫ) such that |ℓA| 6 KǫℓN for all ℓ > ℓ0(K, ǫ).
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