MATHEMATICAL TRIPOS Part III

Monday, 3 June, 2013 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 11

ADDITIVE COMBINATORICS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Define the additive energy E(A, A) of a finite set A of integers. Show that if A has small doubling constant then it has large additive energy, giving a precise statement of this fact.

State a result in the converse direction and show how it follows from a result about sumsets along a graph, which you should state precisely.

Suppose that Γ is a bipartite graph on vertex set $V \cup W$, where |V| = m and |W| = n, with δmn edges joining vertices in V to vertices in W. Let $\epsilon > 0$ be a further parameter. Show that there is a subset $V' \subseteq V$ with $|V'| \ge \delta m/2$ such that between at least a proportion $1 - 2\epsilon/\delta^2$ of the ordered pairs of points $(v_1, v_2) \in V' \times V'$ there are at least ϵn paths $v_1 \to w \to v_2$ of length two.

Discuss, *very briefly*, how this result is important in the proof of the result about sumsets along a graph which you stated earlier.

$\mathbf{2}$

Let $(\phi(n))_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}/\mathbb{Z} . What does it mean for this sequence to be equidistributed? Discuss, without proof, the link between equidistribution and exponential sums of the form $\mathbb{E}_{n \leq N} e(m\phi(n))$. Deduce a criterion, in terms of exponential sums like this, for ϕ to be equidistributed.

Suppose that $(\phi(n))_{n \in \mathbb{N}}$ is not equidistributed. Show that there is an $h \neq 0$ such that the sequence $(\Delta_h \phi(n))_{n \in \mathbb{N}}$ is not equidistributed, where $\Delta_h \phi(n) = \phi(n) - \phi(n+h)$.

Show that $(n^2\sqrt{2})_{n\in\mathbb{N}}$ is equidistributed in \mathbb{R}/\mathbb{Z} .

UNIVERSITY OF

3

Define the Gowers $U^3(N)$ -norm of a function $f : \{1, \ldots, N\} \to \mathbb{C}$.

What is the $U^3(N)$ -norm of the function $f_0(x) = e(\alpha x^2)$?

Briefly discuss the connection between the Gowers $U^3\operatorname{-norm}$ and 4-term arithmetic progressions.

Show that if $|f(x)| \leq 1$ for all x and if $||f||_{U^3(N)} \geq \delta$ then there is a set $H \subseteq \{-N, \ldots, N\}, |H| \gg \delta^C N$, such that the following hold:

1. If $h \in H$ then there is some $\theta(h) \in \mathbf{R}/\mathbf{Z}$ such that

$$|\mathbb{E}_{x\in G}\partial_h f(x)e(-\theta(h)x)| \gg \delta^C;$$

2. There are $\gg \delta^C N^3$ quadruples $h_1, h_2, h_3, h_4 \in H$ such that

$$h_1 + h_2 = h_3 + h_4$$

and

$$\theta(h_1) + \theta(h_2) = \theta(h_3) + \theta(h_4).$$

Give an explicit function $\theta(h)$ which satisfies this in the case $f = f_0$. Give, without proof, an example of a function θ satisfying condition (2) for some $\eta > 0$, but which does not agree with any function of form $\theta(h) = \alpha h + \beta$ for more than o(N) values of $h \in \{-N, \ldots, N\}$.

[You may assume any form of the inverse theorem for the U^2 -norm you wish.]

$\mathbf{4}$

Let N be a prime, and let $R \subseteq \mathbb{Z}/N\mathbb{Z}$ be a set of size d. Let $\epsilon > 0$. Define the Bohr set $B(R, \epsilon)$, and show that it contains a nonzero element if $\epsilon > N^{-1/d}$. Hence show that $B(R, \epsilon)$ contains an arithmetic progression of length at least $\epsilon N^{1/d}$.

Suppose that $A \subseteq \{1, \ldots, N\}$ is a set of size 0.01N. Show there is an absolute constant c > 0 such that the set 2A - 2A contains an arithmetic progression of length at least N^c , for N sufficiently large.

By considering random sets, or otherwise, so that the same conclusion is not necessarily true of the set A itself.

[Any basic facts about the discrete Fourier transform, and about the distribution of prime numbers, should be stated but need not be proven.]

CAMBRIDGE

 $\mathbf{5}$

Let A be a set of integers. Suppose that |A| = N and that $|A + A| \leq KN$. Show that $|\ell A| \leq K^{\ell}N$ for every integer $\ell \geq 2$.

State and prove the Ruzsa covering lemma. Show that for fixed K and $\epsilon > 0$ there there is some $\ell_0 = \ell_0(K, \epsilon)$ such that $|\ell A| \leq K^{\epsilon \ell} N$ for all $\ell \geq \ell_0(K, \epsilon)$.

END OF PAPER