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1

State and prove the Local LYM inquality. State the LYM inequality, and give two

proofs: one using Local LYM and one using maximal chains.

State Sperner’s lemma on antichains, and explain why it follows from the LYM

inequality.

A set system A ⊂ [n](r) is called intersection-free if no distinct A,B,C ∈ A satisfy

A ∩B ⊂ C. Prove that an intersection-free family has size at most 1 +
( r
⌊r/2⌋

)

.

[Hint: Use Sperner’s lemma.]

2

State the Kruskal-Katona theorem.

Let 1 6 r < n/2. State the Erdős-Ko-Rado theorem concerning intersecting families

in [n](r). Give two proofs: one using the Kruskal-Katona theorem and one using intervals

in cyclic orderings.

Give a proof of the LYM inequality using intervals in cyclic orderings.

3

State and prove the vertex-isoperimetric inequality in the discrete cube (Harper’s

theorem).

What does it mean for a sequence of graphs to form a Lévy family? Prove that the

sequence of discrete cubes (Qn)
∞
n=1 forms a Lévy family.

[Estimates on binomial coefficients may be quoted without proof, provided that they

are precisely stated.]

If A ⊂ Qn is a down-set and is extremal for Harper’s theorem (in other words,

the inequality in Harper’s theorem is an equality), does it follow that A is isomorphic

to an initial segment of the simplicial order on Qn? Give a proof or counterexample as

appropriate.
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4

State and prove the Frankl-Wilson theorem (on modular intersections).

Let A ⊂ P([n]) be a family of sets such that, for some positive integer k, we have

|x ∩ y| = k for all distinct x, y ∈ A. Prove that |A| 6 n.

[Hint: Consider the characteristic vectors (indicator functions), over the reals, of

the points of A.]
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