

MATHEMATICAL TRIPOS Part III

Wednesday, 5 June, 2013 9:00 am to 11:00 am

PAPER 10

COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

State and prove the Local LYM inquality. State the LYM inequality, and give two proofs: one using Local LYM and one using maximal chains.

State Sperner's lemma on antichains, and explain why it follows from the LYM inequality.

A set system $\mathcal{A} \subset [n]^{(r)}$ is called *intersection-free* if no distinct $A, B, C \in \mathcal{A}$ satisfy $A \cap B \subset C$. Prove that an intersection-free family has size at most $1 + \binom{r}{\lfloor r/2 \rfloor}$.

[Hint: Use Sperner's lemma.]

$\mathbf{2}$

State the Kruskal-Katona theorem.

Let $1 \leq r < n/2$. State the Erdős-Ko-Rado theorem concerning intersecting families in $[n]^{(r)}$. Give two proofs: one using the Kruskal-Katona theorem and one using intervals in cyclic orderings.

Give a proof of the LYM inequality using intervals in cyclic orderings.

3

State and prove the vertex-isoperimetric inequality in the discrete cube (Harper's theorem).

What does it mean for a sequence of graphs to form a *Lévy family*? Prove that the sequence of discrete cubes $(Q_n)_{n=1}^{\infty}$ forms a Lévy family.

[Estimates on binomial coefficients may be quoted without proof, provided that they are precisely stated.]

If $A \subset Q_n$ is a down-set and is extremal for Harper's theorem (in other words, the inequality in Harper's theorem is an equality), does it follow that A is isomorphic to an initial segment of the simplicial order on Q_n ? Give a proof or counterexample as appropriate.

UNIVERSITY OF

 $\mathbf{4}$

State and prove the Frankl-Wilson theorem (on modular intersections).

Let $A \subset \mathcal{P}([n])$ be a family of sets such that, for some positive integer k, we have $|x \cap y| = k$ for all distinct $x, y \in A$. Prove that $|A| \leq n$.

[*Hint: Consider the characteristic vectors (indicator functions), over the reals, of* the points of A.]

END OF PAPER