MATHEMATICAL TRIPOS Part III

Wednesday, 5 June, 2013 $\,$ 1:30 pm to 4:30 pm

PAPER 1

LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

 $\mathbf{1}$

Let V be a finite dimensional complex vector space. Describe the Lie algebra structure on the space L of linear maps from V to V.

What does it mean for a Lie subalgebra L_1 of L to be (i) abelian, (ii) nilpotent, or (iii) soluble?

What is a flag of V?

Prove that if L_1 is soluble then there is a flag of V invariant under L_1 . Deduce that L_1 has a nilpotent subalgebra L_2 with L_1/L_2 abelian.

$\mathbf{2}$

Let V be a finite dimensional complex vector space. Define what it means for a linear map $\alpha: V \longrightarrow V$ to be (i) nilpotent or (ii) semisimple.

Given α show that there are unique nilpotent α_n and semisimple α_s such that $\alpha = \alpha_n + \alpha_s$ and $\alpha_n \alpha_s = \alpha_s \alpha_n$.

Let U and W be subspaces of the space of all linear maps $\alpha : V \longrightarrow V$, with $U \leq W$, and let M be the set of α such that $[\alpha, W] \leq U$. Show that if α in M satisfies $tr(\alpha\beta) = 0$ for all β in M then α is nilpotent.

3

Define what it means for a finite dimensional complex Lie algebra L to be semisimple.

Define the Killing form B_L and show that it is non-degenerate when L is semisimple.

What is a Cartan subalgebra H of a complex Lie algebra L? Show that H is a maximal abelian subalgebra when L is semisimple.

$\mathbf{4}$

What is meant by a reduced root system of rank r with a base Δ . What is its Cartan matrix?

What are the reduced root systems of rank 2? In each case give a base and the Cartan matrix, and describe the Weyl group and Weyl chambers.

UNIVERSITY OF

 $\mathbf{5}$

Let L be a semisimple complex Lie algebra with Cartan subalgebra H.

Define what is meant by a representation of L with primitive element of weight ω where ω lies in the dual space H^* of H.

Show that for each ω in H^* there is an irreducible representation with primitive element of weight ω .

Describe the finite dimensional irreducible representations when $L = sl_2$ giving the weight of a primitive element in each case.

6

What is meant by the complexification of a finite dimensional real Lie algebra L_0 .

Show that L_0 is semisimple if and only if its complexification is semisimple.

Give examples of two non-isomorphic real Lie algebras with isomorphic complexifications.

What is a split semisimple Lie algebra? Are your two real Lie algebras split semisimple?

END OF PAPER