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1

Let V be a finite dimensional complex vector space. Describe the Lie algebra
structure on the space L of linear maps from V to V .

What does it mean for a Lie subalgebra L1 of L to be (i) abelian, (ii) nilpotent, or
(iii) soluble?

What is a flag of V ?

Prove that if L1 is soluble then there is a flag of V invariant under L1. Deduce that
L1 has a nilpotent subalgebra L2 with L1/L2 abelian.

2

Let V be a finite dimensional complex vector space. Define what it means for a
linear map α : V −→ V to be (i) nilpotent or (ii) semisimple.

Given α show that there are unique nilpotent αn and semisimple αs such that
α = αn + αs and αnαs = αsαn.

Let U and W be subspaces of the space of all linear maps α : V −→ V , with U 6 W ,
and let M be the set of α such that [α,W ] 6 U . Show that if α in M satisfies tr(αβ) = 0
for all β in M then α is nilpotent.

3

Define what it means for a finite dimensional complex Lie algebra L to be semisimple.

Define the Killing form BL and show that it is non-degenerate when L is semisimple.

What is a Cartan subalgebra H of a complex Lie algebra L? Show that H is a
maximal abelian subalgebra when L is semisimple.

4

What is meant by a reduced root system of rank r with a base ∆. What is its
Cartan matrix?

What are the reduced root systems of rank 2? In each case give a base and the
Cartan matrix, and describe the Weyl group and Weyl chambers.
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5

Let L be a semisimple complex Lie algebra with Cartan subalgebra H.

Define what is meant by a representation of L with primitive element of weight ω
where ω lies in the dual space H∗ of H.

Show that for each ω in H∗ there is an irreducible representation with primitive
element of weight ω.

Describe the finite dimensional irreducible representations when L = sl2 giving the
weight of a primitive element in each case.

6

What is meant by the complexification of a finite dimensional real Lie algebra L0.

Show that L0 is semisimple if and only if its complexification is semisimple.

Give examples of two non-isomorphic real Lie algebras with isomorphic complexifi-
cations.

What is a split semisimple Lie algebra? Are your two real Lie algebras split
semisimple?
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