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(i) Let k > 1 and γ0 > 1/(k + 1) be fixed, and let γ = γ(n) satisfy

γ0 6 γ(n) 6 1−
ω(n)

log n
,

where ω(n) → ∞. Show that for p = γ(log n)/n whp Gn,p has a (huge) component with
n− (1 + o(1))n1−γ vertices, and every other component is a tree of order at most k.

(ii) Let L = {1, . . . , ℓ}, where ℓ = ⌊n1/2⌋, and for a random graph process G̃ = (Gn,t)
N
t=0

on {1, . . . , n}, let τ be the minimal t such that in Gn,t any two vertices of L are connected.
Finally, let ω(n) → ∞. Show that whp

(
log n− ω(n)

)
n/4 6 τ(G̃) 6

(
log n+ ω(n)

)
n/4 .

2

(i) Call a partition (V1, V2) of the vertex set V of a graph G with n vertices a cut if no edge
of G joins V1 to V2. [Thus V1 ∪ V2 = V and V1 ∩ V2 = ∅.] Show that if every component
of G has at most (k + 1)n/k(2k + 1) vertices then there is a cut (V1, V2) with

max{|V1|, |V2|} 6 (k + 1)n/(2k + 1) .

(ii) Let {ei,j : i = 1, 2, . . . , j = 1, . . . , k} be an array of independent random variables,
with each ei,j a uniformly distributed random edge of the complete graph with vertex set
[n] = {1, . . . , n}. For ω = (ωi)

m
1 ∈ [k]m = {1, . . . , k}m, let Gm

ω be the graph with vertex
set [n] and edge set {ei,ωi

: 1 6 i 6 m}. Show that there is an integer c = ck depending
only on k such that

lim
n→∞

P
(
L1(G

cn
ω ) > 2n/3 for every ω ∈ [k]cn

)
= 1 ,

where L1(G) is the maximal order of a component of G.
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(i) Let p(n) = λ/n = (1− ε)/n, with ε > 0 constant. Show that whp

L1(Gn,p) = (1 + o(1))ℓ0 ,

where L1(G) denotes the maximal order of a component of Gn,p, ℓ0 = ⌊(log n)/δ⌋, and

δ = − log
(
λe1−λ

)
= − log(1− ε)− ε = ε2/2 + ε3/3 + · · · .

(ii) Deduce that for λ > 1 we have

∞∑

k=1

kk−1

k!
(λe−λ)k = λ∗ ,

where 0 < λ∗ < 1 is defined by λ∗e−λ∗

= λe−λ.

4

(i) Let T(n,p) be the Galton–Watson branching process with offspring distribution Bi(n, p).
Show that, for p = (1 + ε)/n, with ε > 0 small, the survival probability ρ = ρ(n,p) of the
binomial Galton–Watson branching process Tn,p satisfies

2ε− 4ε2 6 ρ 6 2ε .

(ii) Let p = (1+ε)/n with n−1/6 6 ε = ε(n) = o(1). Prove that E
(
L1(Gn,p)

)
= (2+o(1))εn,

where L1(G) is the maximal order of a component of a graph G.
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A rule R for an Achlioptas process ĜR = (Gt) is said to satisfy the Explosive
Percolation Hypothesis (EPH) with jump δ > 0 if whp we have

L1(Gt′c) = o(n) and L1(Gtc) > δn ,

where δn < tc = tc(n) < 3n and t′c = tc(n)− φ(n), with φ(n) = o(n).

(i) Prove that, given δ > 0, there is a constant D = D(δ) such that if EPH holds with
jump δ then, for every fixed k > 1, whp we have

N[k,Dk)(Gtk) > δn/4 ,

where tk = tc − δn/2k, and N[k,ℓ)(G) denotes the total number of vertices on the
components of G with at least k and fewer than ℓ vertices.

(ii) Without going into any detailed calculations, sketch how the first part can be used to
show that no rule satisfies EPH.
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