MATHEMATICAL TRIPOS Part III

Monday, 11 June, 2012 9:00 am to 11:00 am

PAPER 9

PERCOLATION ON GRAPHS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(i) Let $k \ge 1$ and $\gamma_0 > 1/(k+1)$ be fixed, and let $\gamma = \gamma(n)$ satisfy

$$\gamma_0 \leqslant \gamma(n) \leqslant 1 - \frac{\omega(n)}{\log n},$$

where $\omega(n) \to \infty$. Show that for $p = \gamma(\log n)/n$ whp $G_{n,p}$ has a (huge) component with $n - (1 + o(1))n^{1-\gamma}$ vertices, and every other component is a tree of order at most k.

(ii) Let $L = \{1, \ldots, \ell\}$, where $\ell = \lfloor n^{1/2} \rfloor$, and for a random graph process $\widetilde{G} = (G_{n,t})_{t=0}^N$ on $\{1, \ldots, n\}$, let τ be the minimal t such that in $G_{n,t}$ any two vertices of L are connected. Finally, let $\omega(n) \to \infty$. Show that whp

$$\left(\log n - \omega(n)\right)n/4 \leq \tau(\widetilde{G}) \leq \left(\log n + \omega(n)\right)n/4.$$

$\mathbf{2}$

(i) Call a partition (V_1, V_2) of the vertex set V of a graph G with n vertices a cut if no edge of G joins V_1 to V_2 . [Thus $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$.] Show that if every component of G has at most (k+1)n/k(2k+1) vertices then there is a cut (V_1, V_2) with

$$\max\{|V_1|, |V_2|\} \leq (k+1)n/(2k+1).$$

(ii) Let $\{e_{i,j}: i = 1, 2, ..., j = 1, ..., k\}$ be an array of independent random variables, with each $e_{i,j}$ a uniformly distributed random edge of the complete graph with vertex set $[n] = \{1, ..., n\}$. For $\omega = (\omega_i)_1^m \in [k]^m = \{1, ..., k\}^m$, let G_{ω}^m be the graph with vertex set [n] and edge set $\{e_{i,\omega_i}: 1 \leq i \leq m\}$. Show that there is an integer $c = c_k$ depending only on k such that

$$\lim_{n \to \infty} \mathbb{P}(L_1(G_{\omega}^{cn}) \ge 2n/3 \text{ for every } \omega \in [k]^{cn}) = 1,$$

where $L_1(G)$ is the maximal order of a component of G.

UNIVERSITY OF

3

(i) Let $p(n) = \lambda/n = (1 - \varepsilon)/n$, with $\varepsilon > 0$ constant. Show that whp

$$L_1(G_{n,p}) = (1 + o(1))\ell_0$$
,

where $L_1(G)$ denotes the maximal order of a component of $G_{n,p}$, $\ell_0 = \lfloor (\log n)/\delta \rfloor$, and

$$\delta = -\log(\lambda e^{1-\lambda}) = -\log(1-\varepsilon) - \varepsilon = \varepsilon^2/2 + \varepsilon^3/3 + \cdots$$

(ii) Deduce that for $\lambda > 1$ we have

$$\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} (\lambda e^{-\lambda})^k = \lambda^* \,,$$

where $0 < \lambda^* < 1$ is defined by $\lambda^* e^{-\lambda^*} = \lambda e^{-\lambda}$.

 $\mathbf{4}$

(i) Let $\mathcal{T}_{(n,p)}$ be the Galton–Watson branching process with offspring distribution $\operatorname{Bi}(n,p)$. Show that, for $p = (1 + \varepsilon)/n$, with $\varepsilon > 0$ small, the survival probability $\rho = \rho_{(n,p)}$ of the binomial Galton–Watson branching process $\mathcal{T}_{n,p}$ satisfies

$$2\varepsilon - 4\varepsilon^2 \leqslant \rho \leqslant 2\varepsilon \, .$$

(ii) Let $p = (1+\varepsilon)/n$ with $n^{-1/6} \leq \varepsilon = \varepsilon(n) = o(1)$. Prove that $\mathbb{E}(L_1(G_{n,p})) = (2+o(1))\varepsilon n$, where $L_1(G)$ is the maximal order of a component of a graph G.

UNIVERSITY OF

 $\mathbf{5}$

A rule R for an Achlioptas process $\widehat{G}_R = (G_t)$ is said to satisfy the Explosive Percolation Hypothesis (EPH) with jump $\delta > 0$ if whp we have

$$L_1(G_{t'_c}) = o(n)$$
 and $L_1(G_{t_c}) \ge \delta n$,

where $\delta n < t_c = t_c(n) < 3n$ and $t'_c = t_c(n) - \phi(n)$, with $\phi(n) = o(n)$.

(i) Prove that, given $\delta > 0$, there is a constant $D = D(\delta)$ such that if EPH holds with jump δ then, for every fixed $k \ge 1$, whp we have

$$N_{[k,Dk)}(G_{t_k}) \ge \delta n/4 \,,$$

where $t_k = t_c - \delta n/2k$, and $N_{[k,\ell)}(G)$ denotes the total number of vertices on the components of G with at least k and fewer than ℓ vertices.

(ii) Without going into any detailed calculations, sketch how the first part can be used to show that no rule satisfies EPH.

END OF PAPER