MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2012 1:30 pm to 4:30 pm

PAPER 83

SET THEORY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight. You may assume the Axiom of Choice for all questions except question 1.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

(i) Define xEy by $\mathcal{P}(x) \in \mathcal{P}(y)$. By considering a set with no *E*-minimal member or otherwise, prove without using the Axiom of Foundation that *E* is wellfounded.

(ii) If $\mathfrak{P} = \langle P, \leqslant \rangle$ is a poset, let \mathfrak{P}^* be the poset of chains in \mathfrak{P} . By use of Hartogs' theorem or otherwise prove that there is no order-preserving injection $\mathfrak{P}^* \hookrightarrow \mathfrak{P}$.

$\mathbf{2}$

HC, the set of hereditarily countable sets, is the \subseteq -least set X such that $\mathcal{P}_{\aleph_1}(X)$ (the class of countable subsets of X) is included in X. Explain why this definition makes sense.

By considering an injection $\mathcal{P}_{\aleph_1}(\Re) \hookrightarrow \Re$ or otherwise establish that $|HC| \leq 2^{\aleph_0}$.

What is the rank of HC? What axioms of ZFC does it model? (Brief expanations will suffice).

3

Show that every infinite set X has $2^{2^{|X|}}$ ultrafilters.

$\mathbf{4}$

How many pairwise nonisomorphic total orders $\langle X, \leq_X \rangle$ can you find where $|X| = \aleph_1$ and every proper initial segment is isomorphic to the rationals (with possibly an endpoint)? [*Hint: stationary sets.*]

$\mathbf{5}$

What are Aronszajn trees? Are there any?

END OF PAPER