MATHEMATICAL TRIPOS Part III

Tuesday, 12 June, 2012 $\quad 1:30~\mathrm{pm}$ to 4:30 pm

PAPER 81

ALGEBRAIC NUMBER THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

State and prove the Kummer–Dedekind theorem.

Verify that $(4 + \sqrt{5})$ is a prime of $\mathbb{Q}(\sqrt{5})$ with residue field \mathbb{F}_{11} , and determine its prime factorisation in $\mathbb{Z}[\zeta_5]$. Here ζ_5 denotes a primitive fifth root of unity that satisfies $\zeta_5 + \zeta_5^{-1} = \frac{-1+\sqrt{5}}{2}$.

[You may assume that $\mathbb{Z}[\zeta_5]$ is the ring of integers of $\mathbb{Q}(\zeta_5)$.]

$\mathbf{2}$

Define the terms decomposition group, inertia subgroup and Frobenius element.

(i) Let F/K be a Galois extension of number fields and \mathfrak{q} a prime above \mathfrak{p} . Show that the order of the inertia subgroup at \mathfrak{q} is equal to the ramification degree of \mathfrak{q} over \mathfrak{p} .

Suppose that the Galois group of F over K is cyclic of order l^2 for some prime l, and let L denote the unique intermediate field of F/K. Prove that if \mathfrak{p} ramifies in L/K, then it must be totally ramified in F/K.

(ii) Show that 7 is unramified in $\mathbb{Q}(\zeta_{25})/\mathbb{Q}$ and determine the corresponding Frobenius element. How many primes are there above 7 in this extension? Justify your answer.

 $[\zeta_{25} \text{ denotes a primitive } 25^{\text{th}} \text{ root of unity.}]$

3

(i) State the Main Theorem of Class Field Theory.

(ii) Prove that the ray class field for the modulus (5) of \mathbb{Q} is $\mathbb{Q}(\sqrt{5})$.

(iii) Let p and q be distinct primes congruent to 1 modulo 4. Show that the Hilbert class field of $\mathbb{Q}(\sqrt{pq})$ contains $\mathbb{Q}(\sqrt{p},\sqrt{q})$ and deduce that the ideal class group of $\mathbb{Q}(\sqrt{pq})$ has even order.

UNIVERSITY OF

 $\mathbf{4}$

State and prove Chebotarev's Density Theorem. You may assume that the *L*-function $L(\rho, s)$ of any 1-dimensional Artin representation ρ has an analytic continuation to \mathbb{C} , except for a simple pole at s = 1 if ρ is trivial, and that $L(\rho, s)$ is analytic and non-zero at s = 1 if ρ is non-trivial.

[Basic properties of L-functions, as well as Artin's or Brauer's Induction Theorem, may be used without proof. You may also assume that only finitely many primes ramify in any given extension of number fields.]

END OF PAPER