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SECTION I

1

Write down the dimensionless equations for thermal convection in a layer with
stress-free and perfectly conducting boundaries, defining the dimensionless parameters
(the Prandtl and Rayleigh numbers) that appear.

Give expressions in terms of these parameters for the exponential growth rate of
infinitesimal disturbances with wavenumber k, when the Prandtl number is (a) very large
and (b) equal to unity. In case (a) show that when R ≫ 1 the maximum growth rate
occurs for k2 ≈ π2 and is approximately equal to R/4π2.

2

The reduced model for weakly nonlinear thermosolutal convection takes the form

ȧ = σ(−a+ rb− rsd)

ḃ = −b+ a(1− c)

ċ = ̟(−c+ ab)

ḋ = −τd+ a(1− e)

ė = ̟(−τe+ ad).

(i) Explain briefly the meaning of the variables a, b, c, d, e, and the parameters
σ, τ, r, rs,̟.

(ii) Show that on the steady solution branch r and a2 are related by r = (1 +
a2) + rsτ(1 + a2)/(τ2 + a2). Show that if τ < 1 and rs > τ3/(1 − τ)2 the steady solution
branch is subcritical, and that in this case the minimum value rmin of r occurs when
a2 = −τ2 +

√

rsτ(1− τ2), and takes the value

rmin = (
√
rsτ +

√

1− τ2)2

(iii) Now let β be defined by rs = β2τ . It is given that for very small τ the critical value
of r for oscillations, r(0), is approximately 1 + τδ + β2τ/δ, where δ = σ/(1 + σ). Show
that, if terms of order τ2 are neglected, rmin is never greater than r(0).
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SECTION II

3

In mildly subcritical thermosolutal convection two-dimensional motion is described
by the evolution equation for the complex amplitude A(x, t):

Ȧ = µA+ α|A|2A− |A|4A+Axx, α > 0; µ, α real

(a) Find the range of µ in which uniform patterns (steady solutions independent of
x) exist, and are stable to x-independent disturbances.

(b) Now consider the possibility of a steady solution in which A → 0, x → ∞, and
|A| → const., x → −∞. Writing A = R(x)eiφ(x), and considering the real and imaginary
parts of the equation, show that for a solution of this type dφ/dx = 0. Then consider the
equation for the real variable R, and show that such a solution can only exist for a unique
value of µ < 0, which should be determined.

4

The equation for the vertically averaged temperature Θ(x, y, t) in long-wavelength
convection with (slightly) asymmetric boundary conditions takes the form

∂Θ

∂t
= −αΘ − µ∇2Θ−∇4Θ− ǫγ∇ · (Θ∇Θ) +∇ · (|∇Θ|2∇Θ),

where γ is a constant and ǫ ≪ 1. Now assume that µ = µc + µ2ǫ
2, where µc is

the critical value of µ for instability for small disturbances. Writing ∂/∂t = ǫ2∂/∂T ,
Θ = ǫ(A(T )eik1·x + B(T )eik2·x + C(T )eik3·x + c.c) + ǫ3Θ3 + . . ., where k1 = kc(1, 0),
k2 = kc(−1/2,

√
3/2), k3 = kc(−1/2,−

√
3/2), and kc is the optimum wavenumber, derive

coupled evolution equations for the complex amplitudes A,B,C. Show that roll type
solutions (A 6= 0, B = C = 0) are never stable.
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SECTION III

5

Convection in a layer heated from below in the presence of an imposed vertical
magnetic field is governed by the usual temperature equation, together with the induction
equation for the solenoidal magnetic field B:

∂B

∂t
+ u · ∇B = B · ∇u+ η∇2B,

where η is the magnetic diffusivity. There is also an additional body force µ−1
0 B ·∇B (the

Lorentz force) on the right hand side of the momentum equation.

(i) Writing B = B0(ẑ + b), show that after nondimensionalization the linearised
momentum and induction equations take the form

1

σ
u̇ = −∇P +Qζ

∂b

∂z
+Rθẑ+∇2u,

ḃ =
∂u

∂z
+ ζ∇2b,

where ζ = η/κ, Q = B2
0d

2/µ0ρ0ην.

(ii) Assuming perfectly conducting, stress-free boundaries, and that b is vertical at
the upper and lower boundary, show that solutions can be found in which bz ∝ cos πz,
bx,y ∝ sinπz, and hence derive the dispersion relation for the growth rate λ of disturbances
with horizontal wavenumber k. Show that the condition for marginal steady solutions is
R = R(e) = ((π2 + k2)3 +Qπ2(π2 + k2))/k2, and find the condition R = R(o) for marginal
oscillatory convection. Show that marginal oscillations can exist only when ζ < 1 and Q
is sufficiently large.

(iii) Now consider the case Q ≫ 1. Show that for both steady and oscillatory
convection R is minimised when k ∼ Q1/6, and find both the critical wavenumber and the
minimum value of R correct to order Q2/3.

For general Q, derive the explicit expression for Q in terms of the minimum value
Rc of R

(e)(k) for steady convection and R0 = 27π4/4, the critical value when Q = 0:

Qπ2 = Rc −R
2

3

c R
1

3

0 ,

and give an expression for the corresponding value of k2 in terms of Rc and R0.

END OF PAPER
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