MATHEMATICAL TRIPOS Part III

Thursday, 31 May, 2012 $\,$ 1:30 pm to 4:30 pm

PAPER 76

PERTURBATION AND STABILITY METHODS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1
 - (a) Distinguish between a *regular* and a *singular* perturbation. Illustrate your answer by finding two terms of an asymptotic expansion as $\epsilon \to 0$ for the roots of the equation

$$\epsilon x^3 + x^2 - 2 = 0 \; .$$

(b) The function f(z) is defined as

$$f(z) = \int_0^z \exp(-t^2) \mathrm{d}t \; .$$

Obtain the leading order term of an asymptotic expansion (or expansions) of f(z) for $|z| \to \infty$ and fixed $\arg(z)$ in the sector $0 \leq \arg(z) \leq \pi/2$.

(c) The (Bessel) function g(x) is defined for real x > 0 as

$$g(x) = -\frac{2}{\pi} \int_0^\infty \cos(x \cosh t) \mathrm{d}t \; .$$

Obtain the leading order term of an asymptotic expansion for g(x) in the limits $x \to 0$ and $x \to \infty$. [If you quote a standard result, a brief explanation should be given.]

 $\mathbf{2}$

Consider the WKB equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + k^2 y = 0 \; ,$$

where k is a real function of $X = \epsilon x$. Show, without approximation, that the equation has solutions of the form

$$y = A(X, \epsilon) \exp\left[i \int^X \sigma(X', \epsilon) dX'/\epsilon\right],$$

where A and σ are real, provided that σA^2 is constant and A satisfies a differential equation to be determined.

Now suppose that $\epsilon \to 0$. By expanding both A and σ , obtain leading order approximations σ_0 , A_0 and hence y_0 . Obtain also an expression involving k for the first correction σ_1 .

Consider now the Sturm-Liouville problem

$$\frac{d^2 y}{dx^2} + \lambda(x+1)^2 y = 0 \quad \text{with } y(0) = y(1) = 0.$$

Use the results above to determine the eigenvalues λ_n as $\lambda_n \to \infty$, finding two terms of an asymptotic expansion for λ_n .

- 3
- (a) The function $y(x; \epsilon)$ satisfies

$$\epsilon y'' + Axy' + xy = 0$$
 with $y(0) = y(1) = 1$,

where A is a constant and $\epsilon \ll 1$. In the case A > 0 determine the location and size of the inner region, and find the first non-zero terms in the outer and inner regions. Without detailed calculation, explain what happens when A < 0 and when A = 0.

(b) In the following, the Fourier Transform (FT) is defined by

$$\overline{f}(k) = \int_{-\infty}^{\infty} \exp(-ikx)f(x)dx$$
.

Show that:

(i) $\overline{\mathrm{H}(x)} = \pi \delta(k) + \frac{1}{\mathrm{i}k};$

(ii)
$$\overline{1/x} = -i\pi \operatorname{sgn}(k)$$
:

(ii) $1/x = -i\pi \operatorname{sgn}(k);$ (iii) $\overline{\log |x|} = -(\pi/|k|) + C\delta(k),$

where the constant C need not be determined.

Consider the periodic real generalised function defined to be f(x) in $0 \le x \le 1$ and elsewhere by periodicity. Show that, if we write

$$f(x) = \sum_{m=-\infty}^{\infty} c_m \exp(2\pi i m x) ,$$

then the c_m can be written in terms of the FT of f(x)[H(x) - H(x-1)]. Find the behaviour of c_m as $m \to \infty$ when $f(x) = \log |x - 1/2|$.

 $\mathbf{4}$

Consider the linearised Ginzburg-Landau (GL) equation

$$\frac{\partial \eta}{\partial t} + U \frac{\partial \eta}{\partial x} - \mu \eta - \gamma \frac{\partial^2 \eta}{\partial x^2} = F(x, t) , \qquad (1)$$

where F(x,t) is a given forcing function and U and γ are real positive constants.

(a) Consider the case in which μ is a positive constant and $F(x,t) = \delta(x)\delta(t)$. By taking a double Fourier transform of equation (1), or otherwise, show that the Green's function of the GL equation is

5

$$\frac{1}{2\sqrt{\pi\gamma t}} \exp\left\{\mu t - \frac{(x - Ut)^2}{4\gamma t}\right\} \mathbf{H}(t) .$$
⁽²⁾

Hence, describe the different possible behaviours of solutions of the GL equation in the limit $t \to \infty$.

(b) Now suppose that $F(x,t) \equiv 0$ and $\mu = \mu_0 - \nu \epsilon^2 x^2$ with $\epsilon \ll 1$ and $\nu > 0$, and write

$$\eta(x,t) = \exp(Ux/2\gamma)b(\xi)\exp(-i\omega_0 t - i\epsilon\omega_1 t) .$$

Here the function $b(\xi)$ satisfies

$$b'' + (\lambda - \xi^2)b = 0, \qquad (3)$$

with $\xi = \sqrt{\epsilon} f x$ and λ, f are suitable constants (to be be determined). Find ω_0 and ω_1 , and hence find a condition on μ_0 for the system to be globally unstable. How does this result relate to your answer to part (a)? [Solutions of equation (3) which decay at infinity only exist when λ is a positive odd integer.]

END OF PAPER

Part III, Paper 76