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(a) Distinguish between a regular and a singular perturbation. Illustrate your answer by
finding two terms of an asymptotic expansion as ǫ → 0 for the roots of the equation

ǫx3 + x2 − 2 = 0 .

(b) The function f(z) is defined as

f(z) =

∫

z

0

exp(−t2)dt .

Obtain the leading order term of an asymptotic expansion (or expansions) of f(z)
for |z| → ∞ and fixed arg(z) in the sector 0 6 arg(z) 6 π/2.

(c) The (Bessel) function g(x) is defined for real x > 0 as

g(x) = − 2

π

∫

∞

0

cos(x cosh t)dt .

Obtain the leading order term of an asymptotic expansion for g(x) in the limits
x → 0 and x → ∞. [If you quote a standard result, a brief explanation should be
given.]
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Consider the WKB equation

d2y

dx2
+ k2y = 0 ,

where k is a real function of X = ǫx. Show, without approximation, that the equation
has solutions of the form

y = A(X, ǫ) exp

[

i

∫

X

σ(X ′, ǫ)dX ′/ǫ

]

,

where A and σ are real, provided that σA2 is constant and A satisfies a differential equation
to be determined.

Now suppose that ǫ → 0. By expanding both A and σ, obtain leading order
approximations σ0, A0 and hence y0. Obtain also an expression involving k for the first
correction σ1.

Consider now the Sturm-Liouville problem

d2y

dx2
+ λ(x+ 1)2y = 0 with y(0) = y(1) = 0.

Use the results above to determine the eigenvalues λn as λn → ∞, finding two terms of
an asymptotic expansion for λn.
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(a) The function y(x; ǫ) satisfies

ǫy′′ +Axy′ + xy = 0 with y(0) = y(1) = 1 ,

where A is a constant and ǫ ≪ 1. In the case A > 0 determine the location and size
of the inner region, and find the first non-zero terms in the outer and inner regions.
Without detailed calculation, explain what happens when A < 0 and when A = 0.

(b) In the following, the Fourier Transform (FT) is defined by

f(k) =

∫

∞

−∞

exp(−ikx)f(x)dx .

Show that:

(i) H(x) = πδ(k) + 1

ik
;

(ii) 1/x = −iπsgn(k);

(iii) log |x| = −(π/|k|) + Cδ(k),

where the constant C need not be determined.

Consider the periodic real generalised function defined to be f(x) in 0 6 x 6 1 and
elsewhere by periodicity. Show that, if we write

f(x) =

∞
∑

m=−∞

cm exp(2πimx) ,

then the cm can be written in terms of the FT of f(x)[H(x) −H(x − 1)]. Find the
behaviour of cm as m → ∞ when f(x) = log |x− 1/2|.
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Consider the linearised Ginzburg-Landau (GL) equation

∂η

∂t
+ U

∂η

∂x
− µη − γ

∂2η

∂x2
= F (x, t) , (1)

where F (x, t) is a given forcing function and U and γ are real positive constants.

(a) Consider the case in which µ is a positive constant and F (x, t) = δ(x)δ(t). By
taking a double Fourier transform of equation (1), or otherwise, show that the
Green’s function of the GL equation is

1

2
√
πγt

exp

{

µt− (x− Ut)2

4γt

}

H(t) . (2)

Hence, describe the different possible behaviours of solutions of the GL equation in
the limit t → ∞.

(b) Now suppose that F (x, t) ≡ 0 and µ = µ0 − νǫ2x2 with ǫ ≪ 1 and ν > 0, and write

η(x, t) = exp(Ux/2γ)b(ξ) exp(−iω0t− iǫω1t) .

Here the function b(ξ) satisfies

b′′ + (λ− ξ2)b = 0 , (3)

with ξ =
√
ǫfx and λ, f are suitable constants (to be be determined). Find ω0 and

ω1, and hence find a condition on µ0 for the system to be globally unstable. How
does this result relate to your answer to part (a)? [Solutions of equation (3) which
decay at infinity only exist when λ is a positive odd integer.]
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