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(a) State the Reciprocal Theorem for Stokes flow. Derive the Faxén relation

U =
F

6πµ
+

(

1 +
a2

6
∇2

)

u∞

for the velocity U of a rigid sphere of radius a that is placed into an unbounded Stokes
flow u∞(x) and has a force F applied to it.

[You should assume from the outset that the stress exerted on the surface of a rigid sphere

translating with velocity V through unbounded fluid otherwise at rest is given by −3µV/2a.]

(b) State the Papkovich–Neuber representation for the velocity and pressure in
Stokes flow.

Use this representation, explaining your choice of trial harmonic potentials, to
determine the perturbation flow induced by a stationary rigid sphere placed at the origin
of an unbounded uniform strain u = E · x. Why is the perturbation flow induced by a
force-free, couple-free sphere placed in a general linear flow u = U0+Ω∧x+E ·x exactly
the same?

(c) Two force-free, couple-free spheres of radius a are placed symmetrically about
the origin of a uniform shear flow u∞ = (Cy, 0, 0), where C > 0, such that the centres of
the spheres are at ±(X(t), Y (t), 0) in Cartesian coordinates. As t → −∞, it is given that
Y (t) → Y∞ (and X → −∞), where Y∞ ≫ a.

Explaining any approximations, show that

dY

dt
= −

5Ca3

8

XY 2

R5
+O(Ca5/R4),

where R2 = X2+Y 2, and hence that the maximum value Ym attained by Y (t) is given by

Ym = Y∞

(

1 +
5a3

24Y 3
∞

+O(a5/Y 5
∞
)

)

.

What happens to Y (t) as X → ∞, and why?
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The rupture of a thin sheet of viscous fluid due to an attractive (van der Waals)
force per unit area between the two surfaces of the sheet can be analysed in a similar
manner to the Rayleigh instability:

Let the sheet occupy the region −h(x, t) 6 y 6 h(x, t). Assume that the effect of
the attraction is simply to modify the usual stress boundary condition on each interface
to

[σ · n]+
−
=

(

V

h3
+ γκ

)

n,

where V > 0 is a constant coefficient of attraction, γ is the constant coefficient of surface
tension, n is the normal to the interface and κ is its curvature. Gravity and the surrounding
air should be neglected.

Consider small symmetric perturbations to a uniform thickness h0 such that
h = h0 + η(x, t), where η ∝ exp(ikx + st), |η| ≪ h0 and |ηx| ≪ 1. Obtain the linearized
boundary conditions at y = h0. Using Papkovich–Neuber potentials χ and Φ = (0, φ)
with the appropriate symmetry, deduce that the growth rate of the rupture instability is
given by

s =
3V

µh3
0

(1− ΓK2) sinh2 K

K(2K + sinh 2K)
, (1)

where K = kh0, and identify the constant Γ.

Sketch the form of s(K) for the cases Γ = 0 and Γ = 1, and comment on the
physical interpretation of the long and short wavelength behaviour. What additional
physical effects might modify your prediction of the most unstable wavelength?

The surfaces of a planar soap film are uniformly covered with surfactant, which
reduces the unperturbed coefficient of surface tension to a value γ0. Use physical
arguments, with diagrams, to explain why the surfactant decreases the growth rate of
the rupture instability relative to that of a surfactant-free sheet with constant surface
tension γ0. [Mathematical analysis is not required.]

In the limit of strong surfactant effects, (1) is replaced by

s =
3V

µh3
0

(1− ΓK2)(sinh 2K − 2K)

4K cosh2 K
.

Find the maximum growth rate for the case Γ ≫ 1. Comment on the lifetime of a soap
bubble.
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A straight, vertical, axisymmetric thread of viscous fluid of density ρ and viscosity
µ has cross-sectional area A(z, t). Gravity acts in the positive z-direction and surface
tension is negligible. The thread is surrounded by inviscid fluid of density ρa in which
there is a hydrostatic pressure gradient pa(z) = p0 + ρagz.

Assuming that ∂A/∂z ≪ A1/2, derive the equation

3µ

A

∂

∂z

(

A
∂w

∂z

)

+ (ρ− ρa)g = 0 ,

where w is the vertical velocity, explaining your argument carefully. Obtain another
relationship between A and w.

(a) For a steady flow with vertical flux Q, show that

1

2

( 1

w

dw

dz

)2

=
U

w
+ c,

where U is to be identified and c is a constant.

(b) Now let ρ = ρa (or, equivalently, suppose that gravity is negligible). At t = 0
the thread has length 2L0 and cross-sectional area A0(z). For t > 0 the thread is stretched
by pulling on the ends of the thread at z = ±L(t) with equal and opposite forces ±F (t).

By considering the evolution of a fluid element, show that

A(z, t) = A0(z0)−∆(t),

where ∆(t) =
1

3µ

∫ t

0

F (t′) dt′ and z = z0 +

∫ z0

0

∆(t) dz′0
A0(z

′

0
)−∆(t)

. Assume that the fluid

initially at z = 0 remains there.

Find L as a function of ∆ when A0(z) = C(1+ k2z2), where C and k are constants.
If F is constant show that L becomes infinite after a finite time t∗, and determine t∗. Show
also that L ∼ B(t∗− t)β as t → t∗, and find the constants B and β for the two cases k 6= 0
and k = 0. Comment briefly on why the values of β differ between the cases and explain
why B does not depend on L0 for k 6= 0.

[You may assume that

∫

dx

a2 + x2
=

1

a
tan−1 x

a
.]
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A rigid circular cylinder of radius a falls through viscous fluid with its axis horizontal
and parallel to a rigid vertical wall. With respect to suitably chosen coordinates (x, y),
the wall lies along y = 0 and has velocity (−U, 0), the axis of the cylinder is at (0, (1+ǫ)a )
and is stationary, the cylinder rotates about its axis with angular velocity Ω, and the fluid
occupies the region outside the cylinder in y > 0. Assume throughout that 0 < ǫ ≪ 1.

Use the lubrication approximation to determine the flow in the thin gap between
the cylinder and the wall. Show that the flux q through the gap is 2

3
ǫa(Ωa−U) (per unit

axial length of cylinder).

Show also that
σxy
µ

∣

∣

∣

y=0
=

4U − 2Ωa

h
+

6q

h2
,

where h(x) is the gap width, and find a similar expression for σxy on y = h. Hence
calculate the tangential force (per unit length of cylinder) that is exerted by the shear
stress in the thin gap (i) on the wall and (ii) on the cylinder. Why are these forces not
equal and opposite?

The cylinder has a uniform density that is ∆ρ greater than that of the fluid. What
is the force and couple on the cylinder? Use your answers to (i) and (ii) to find U and to
show that Ω = 0 at leading order.

For Ω = 0, sketch, as functions of x, the pressure p(x) and the shear stress σxy(x, h)
on the cylinder. [You need not find p explicitly.] Identify the two points where the shear
stress vanishes on the cylinder. Sketch the streamlines of the flow in the thin gap.

Now consider a two-dimensional Couette flow with rigid walls at y = ±a(1+ǫ) which
have velocity (±U, 0). A force-free, couple-free, rigid cylinder of radius a is introduced
perpendicular to the flow with its axis initially located at (λǫa, 0), where −1 < λ < 1.
Adapt your previous results to deduce the speed V of the cylinder. For λ = 0 sketch
the streamlines on either side of the cylinder, and explain why its angular velocity is
O(ǫ1/2U/a).

[You may assume that if In ≡

∫

∞

−∞

dξ

(1 + ξ2)n
then I1 = π, I2 =

π

2
and I3 =

3π

8
.]
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