
MATHEMATICAL TRIPOS Part III

Wednesday, 6 June, 2012 1:30 pm to 4:30 pm

PAPER 74

BIOLOGICAL PHYSICS

Attempt ALL questions.

There are THREE questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Cover sheet None

Treasury Tag

Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1

A microsphere of radius a and drag coefficient ζ is constrained to move along the
x-axis, and is acted on by an optical trap which is moving in the positive x-direction at
velocity vT . When the trap is located at a point x0 it exerts a force F (x − x0), so the
overdamped dynamics of the particle is

ζẋ = F (x− vT t) .

Suppose that the trap has compact support, so that F (x) = 0 for x < −XL and for
x > XR. If the trap starts to the left of the particle, find the particle’s net displacement
∆x after the trap has passed it by, and the time ∆t spent by the particle interacting
with the trap. What is the condition that assures that the particle does not remain
trapped as t → ∞? Assuming this is the case, show that whatever the form of F (y) the
net displacement is always in the direction of the trap motion, and suggest a heuristic
explanation for this result. Find the asymptotic behaviour of ∆x for large trap velocities.

The trap is now moved around a circle of radius R ≫ a. Derive the particle’s
net rotational frequency fp as a function of the trap angular frequency fT = vT /(2πR),
the displacement ∆x in each kick, the interaction time ∆t and the potential width
2X0 = XR − XL. Confirm that in the regime of suitably large trap velocity, which you
should define precisely, one obtains the intuitive result fp ≃ (∆x/2πR)fT . Specializing
to the case of a triangular trapping potential, with F (x) = F for −X0 < x < 0 and
F (x) = −F for 0 < x < X0, obtain an explicit expression for fp/fc as a function of the
two quantities α = X0/(πR) and β = fT /fc, where 2πRfc = F/ζ.
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An elastic filament with bending modulus A and length L has small-amplitude
excursions h(x) from the x-axis, and is characterized by the bending energy

E =
1

2

∫ L

0
dxAh2xx .

a) Assuming that the filament is free, with no forces and torques acting anywhere on it,
find the Euler-Lagrange equation and “natural” boundary conditions for h(x). Show that
these render the Euler-Lagrange operator self-adjoint.

b) From general principles we know that the set of eigenfunctions of such an operator
define a complete set of basis functions. Show that these can be written as

W (n)(x) = A cos(k(n)x) +B sin(k(n)x) +D cosh(k(n)x) + E sinh(k(n)x) ,

and find the transcendental equation satisfied by k(n). By a graphical construction or
otherwise give approximate values for the infinite sequence of wave vectors k(n).

c) Use the principle of equipartition to find the variance of h(x), using the expansion
h(x) =

∑
anW

(n)(x).

d) Suppose the filament obeys the dynamical equation

ζht = −
δE

δh
,

where ζ is an appropriate drag coefficient. If at time t = 0 the filament has the shape
H(x), find its subsequent time evolution.
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The Brusselator is a model reaction-diffusion system in which two chemical concen-
trations u and v evolve according to the coupled PDEs

ut = Duuxx + a− (b+ 1)u+ u2v , (1)

vt = Dvvxx + bu− u2v , (2)

where the parameters a, b, Du, and Dv are positive constants. We shall consider all to be
fixed except b, which serves as a control parameter.

a) Find the homogeneous steady state with u and v both positive. Linearization of the
governing equations around this value leads to a 2× 2 stability matrix A with entries aij .
Explain the general conditions on trA and detA for stability. Compute these conditions
for the Brusselator.

b) Find the general criterion for stability of the system with diffusion and the wavenumber
of the mode that appears first when a Turing instability occurs. Compute these for
the Brusselator and thereby determine the critical value of b for the instability and the
wavenumber k at onset.
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